NSTiwari commited on
Commit
8f8e28e
·
verified ·
1 Parent(s): eb31b4f

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -0
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import google.generativeai as genai
2
+ from PIL import Image
3
+ import re
4
+ import cv2
5
+ import gradio as gr
6
+
7
+ def parse_bounding_box(response):
8
+ bounding_boxes = re.findall(r'\[(\d+,\s*\d+,\s*\d+,\s*\d+,\s*[\w\s]+)\]', response)
9
+
10
+ # Convert each group into a list of integers and labels.
11
+ parsed_boxes = []
12
+ for box in bounding_boxes:
13
+ parts = box.split(',')
14
+ numbers = list(map(int, parts[:-1]))
15
+ label = parts[-1].strip()
16
+ parsed_boxes.append((numbers, label))
17
+
18
+ # Return the list of bounding boxes with their labels.
19
+ return parsed_boxes
20
+
21
+ # Draw bounding boxes with labels.
22
+ def draw_bounding_boxes(image, bounding_boxes_with_labels):
23
+ label_colors = {}
24
+ if image.mode != 'RGB':
25
+ image = image.convert('RGB')
26
+
27
+ image = np.array(image)
28
+
29
+ for bounding_box, label in bounding_boxes_with_labels:
30
+ # Normalize the bounding box coordinates
31
+ width, height = image.shape[1], image.shape[0]
32
+ ymin, xmin, ymax, xmax = bounding_box
33
+ x1 = int(xmin / 1000 * width)
34
+ y1 = int(ymin / 1000 * height)
35
+ x2 = int(xmax / 1000 * width)
36
+ y2 = int(ymax / 1000 * height)
37
+
38
+ if label not in label_colors:
39
+ color = np.random.randint(0, 256, (3,)).tolist()
40
+ label_colors[label] = color
41
+ else:
42
+ color = label_colors[label]
43
+
44
+ font = cv2.FONT_HERSHEY_SIMPLEX
45
+ font_scale = 1
46
+ font_thickness = 2
47
+ box_thickness = 2
48
+ text_size = cv2.getTextSize(label, font, font_scale, font_thickness)[0]
49
+
50
+ text_bg_x1 = x1
51
+ text_bg_y1 = y1 - text_size[1] - 5
52
+ text_bg_x2 = x1 + text_size[0] + 8
53
+ text_bg_y2 = y1
54
+
55
+ cv2.rectangle(image, (text_bg_x1, text_bg_y1), (text_bg_x2, text_bg_y2), color, -1)
56
+ cv2.putText(image, label, (x1 + 2, y1 - 5), font, font_scale, (255, 255, 255), font_thickness)
57
+ cv2.rectangle(image, (x1, y1), (x2, y2), color, box_thickness)
58
+
59
+ image = Image.fromarray(image)
60
+ return image
61
+
62
+ def detect_objects(api_key, prompt, input_image):
63
+ genai.configure(api_key=api_key)
64
+
65
+ img = Image.open(input_image)
66
+
67
+ model = genai.GenerativeModel(model_name='gemini-1.5-pro')
68
+
69
+ response = model.generate_content([
70
+ img,
71
+ (
72
+ f"Return bounding boxes for {prompt} in the image in the following format as"
73
+ " a list. \n [ymin, xmin, ymax, xmax, object_name]. "
74
+ ),
75
+ ])
76
+
77
+ result = response.text
78
+ result = result[result.find('-'):].strip()
79
+
80
+ bounding_box = parse_bounding_box(result)
81
+ output = draw_bounding_boxes(img, bounding_box)
82
+
83
+ return output
84
+
85
+ # Gradio app
86
+ demo = gr.Interface(
87
+ fn=detect_objects,
88
+ inputs=[
89
+ gr.Textbox(label="Your Gemini API Key", type="password"),
90
+ gr.Textbox(label="Object(s) to detect", value="famous personality"),
91
+ gr.Image(type="filepath", label="Input Image")
92
+ ],
93
+ outputs=gr.Image(type="pil", label="Detected Image"),
94
+ title="Object Detection using Gemini ✨",
95
+ description="Detect objects in images using the Gemini.",
96
+ allow_flagging="never"
97
+ )
98
+
99
+ if __name__ == "__main__":
100
+ demo.launch(debug=True)