import google.generativeai as genai from PIL import Image import re import cv2 import numpy as np import gradio as gr def parse_bounding_box(response): bounding_boxes = re.findall(r'\[(\d+,\s*\d+,\s*\d+,\s*\d+,\s*[\w\s]+)\]', response) # Convert each group into a list of integers and labels. parsed_boxes = [] for box in bounding_boxes: parts = box.split(',') numbers = list(map(int, parts[:-1])) label = parts[-1].strip() parsed_boxes.append((numbers, label)) # Return the list of bounding boxes with their labels. return parsed_boxes # Draw bounding boxes with labels. def draw_bounding_boxes(image, bounding_boxes_with_labels): label_colors = {} if image.mode != 'RGB': image = image.convert('RGB') image = np.array(image) for bounding_box, label in bounding_boxes_with_labels: # Normalize the bounding box coordinates width, height = image.shape[1], image.shape[0] ymin, xmin, ymax, xmax = bounding_box x1 = int(xmin / 1000 * width) y1 = int(ymin / 1000 * height) x2 = int(xmax / 1000 * width) y2 = int(ymax / 1000 * height) if label not in label_colors: color = np.random.randint(0, 256, (3,)).tolist() label_colors[label] = color else: color = label_colors[label] font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 1 font_thickness = 2 box_thickness = 2 text_size = cv2.getTextSize(label, font, font_scale, font_thickness)[0] text_bg_x1 = x1 text_bg_y1 = y1 - text_size[1] - 5 text_bg_x2 = x1 + text_size[0] + 8 text_bg_y2 = y1 cv2.rectangle(image, (text_bg_x1, text_bg_y1), (text_bg_x2, text_bg_y2), color, -1) cv2.putText(image, label, (x1 + 2, y1 - 5), font, font_scale, (255, 255, 255), font_thickness) cv2.rectangle(image, (x1, y1), (x2, y2), color, box_thickness) image = Image.fromarray(image) return image def detect_objects(api_key, prompt, input_image): genai.configure(api_key=api_key) img = Image.open(input_image) model = genai.GenerativeModel(model_name='gemini-1.5-pro') response = model.generate_content([ img, ( f"Return bounding boxes for {prompt} in the image in the following format as" " a list. \n [ymin, xmin, ymax, xmax, object_name]. " ), ]) result = response.text result = result[result.find('-'):].strip() bounding_box = parse_bounding_box(result) output = draw_bounding_boxes(img, bounding_box) return output # Gradio app demo = gr.Interface( fn=detect_objects, inputs=[ gr.Textbox(label="Your Gemini API Key", type="password"), gr.Textbox(label="Object(s) to detect", value="famous personality"), gr.Image(type="filepath", label="Input Image") ], outputs=gr.Image(type="pil", label="Detected Image"), title="Object Detection using Gemini ✨", description="Detect objects in images using the Gemini.", allow_flagging="never" ) if __name__ == "__main__": demo.launch(debug=True)