File size: 2,912 Bytes
76dcca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(device)
pipe.enable_xformers_memory_efficient_attention()
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, safety_checker=None)
upscaler = upscaler.to(device)
upscaler.enable_xformers_memory_efficient_attention()


def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
    generator = torch.Generator(device=device).manual_seed(seed)
    if upscale == "Yes":
        low_res_latents = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images
        image = upscaler(Prompt, negative_prompt=negative_prompt, image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0]
    else:
        image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
    return image
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=10, step=.25), 
                               gr.Slider(25, maximum=100, value=50, step=25), 
                               gr.Slider(minimum=1, step=1, maximum=9999999999999999, randomize=True), 
                               gr.Radio(["Yes", "No"], label='Upscale?', value='No'),
                              ],
             outputs=gr.Image(label='Generated Image'), 
             title="PhotoReal V2 with SD x2 Upscaler - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)