import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from peft import PeftModel import torch # Định nghĩa tên mô hình gốc và adapter BASE_MODEL_NAME = "unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit" ADAPTER_MODEL_PATH = "lora_model" # Load mô hình gốc base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, torch_dtype=torch.float16, device_map="auto") # Áp dụng adapter LoRA model = PeftModel.from_pretrained(base_model, ADAPTER_MODEL_PATH) tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME) def generate_response(prompt): """Generate a response from the model.""" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") streamer = TextStreamer(tokenizer) with torch.no_grad(): model.generate(**inputs, streamer=streamer, max_length=512) return "" # Streamlit UI st.set_page_config(page_title="Chatbot", page_icon="🤖") st.title("🤖 AI Chatbot") # Initialize chat history if not exists if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # User input user_input = st.chat_input("Nhập tin nhắn...") if user_input: # Append user message st.session_state.messages.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) # Generate response with st.chat_message("assistant"): response = generate_response(user_input) st.markdown(response) # Append assistant response st.session_state.messages.append({"role": "assistant", "content": response})