Spaces:
Sleeping
Sleeping
Commit
·
3c927bc
1
Parent(s):
6e4fdaf
Update model.py
Browse files
model.py
CHANGED
@@ -14,23 +14,23 @@ def classify(img):
|
|
14 |
if a==0:
|
15 |
return "Enter the medical Image"
|
16 |
if a==1:
|
17 |
-
c = bone_net(
|
18 |
if a==2:
|
19 |
-
c = brain_net(
|
20 |
if a==3:
|
21 |
-
c = Eye_net(
|
22 |
if a==4:
|
23 |
-
c = kidney_net(
|
24 |
if a==5:
|
25 |
-
c = chest_net(
|
26 |
if a==6:
|
27 |
-
c = skin_net(
|
28 |
return c
|
29 |
|
30 |
|
31 |
|
32 |
def bone_net(img):
|
33 |
-
img = cv2.resize(img,(224,224))
|
34 |
model = tf.keras.models.load_model("Fracture.h5",compile=False)
|
35 |
result = model.predict(np.array([img]))
|
36 |
op=""
|
@@ -42,7 +42,7 @@ def bone_net(img):
|
|
42 |
|
43 |
def brain_net(img):
|
44 |
lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
|
45 |
-
img = cv2.resize(img,(52,52))
|
46 |
model = tf.keras.models.load_model("brain.h5",compile=False)
|
47 |
result = model.predict(np.array([img]))
|
48 |
ans = np.argmax(result)
|
@@ -50,7 +50,7 @@ def brain_net(img):
|
|
50 |
|
51 |
def chest_net(img):
|
52 |
lt = ['PNEUMONIA', 'NORMAL']
|
53 |
-
img = cv2.resize(img,(224,224))
|
54 |
model = tf.keras.models.load_model("chest.h5",compile=False)
|
55 |
result = model.predict(np.array([img]))
|
56 |
ans = np.argmax(result)
|
@@ -58,7 +58,7 @@ def chest_net(img):
|
|
58 |
|
59 |
def Eye_net(img):
|
60 |
lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
|
61 |
-
img = cv2.resize(img,(224,224))
|
62 |
model = tf.keras.models.load_model("eye.h5",compile=False)
|
63 |
result = model.predict(np.array([img]))
|
64 |
ans = np.argmax(result)
|
@@ -66,7 +66,7 @@ def Eye_net(img):
|
|
66 |
|
67 |
def kidney_net(img):
|
68 |
lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
|
69 |
-
img = cv2.resize(img,(224,224))
|
70 |
model = tf.keras.models.load_model("kidney.h5",compile=False)
|
71 |
result = model.predict(np.array([img]))
|
72 |
ans = np.argmax(result)
|
@@ -74,7 +74,7 @@ def kidney_net(img):
|
|
74 |
|
75 |
def skin_net(img):
|
76 |
lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
|
77 |
-
img = cv2.resize(img,(224,224))
|
78 |
model = tf.keras.models.load_model("skin_cancer.h5",compile=False)
|
79 |
result = model.predict(np.array([img]))
|
80 |
ans = np.argmax(result)
|
|
|
14 |
if a==0:
|
15 |
return "Enter the medical Image"
|
16 |
if a==1:
|
17 |
+
c = bone_net(im)
|
18 |
if a==2:
|
19 |
+
c = brain_net(im)
|
20 |
if a==3:
|
21 |
+
c = Eye_net(im)
|
22 |
if a==4:
|
23 |
+
c = kidney_net(im)
|
24 |
if a==5:
|
25 |
+
c = chest_net(im)
|
26 |
if a==6:
|
27 |
+
c = skin_net(im)
|
28 |
return c
|
29 |
|
30 |
|
31 |
|
32 |
def bone_net(img):
|
33 |
+
# img = cv2.resize(img,(224,224))
|
34 |
model = tf.keras.models.load_model("Fracture.h5",compile=False)
|
35 |
result = model.predict(np.array([img]))
|
36 |
op=""
|
|
|
42 |
|
43 |
def brain_net(img):
|
44 |
lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
|
45 |
+
# img = cv2.resize(img,(52,52))
|
46 |
model = tf.keras.models.load_model("brain.h5",compile=False)
|
47 |
result = model.predict(np.array([img]))
|
48 |
ans = np.argmax(result)
|
|
|
50 |
|
51 |
def chest_net(img):
|
52 |
lt = ['PNEUMONIA', 'NORMAL']
|
53 |
+
# img = cv2.resize(img,(224,224))
|
54 |
model = tf.keras.models.load_model("chest.h5",compile=False)
|
55 |
result = model.predict(np.array([img]))
|
56 |
ans = np.argmax(result)
|
|
|
58 |
|
59 |
def Eye_net(img):
|
60 |
lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
|
61 |
+
# img = cv2.resize(img,(224,224))
|
62 |
model = tf.keras.models.load_model("eye.h5",compile=False)
|
63 |
result = model.predict(np.array([img]))
|
64 |
ans = np.argmax(result)
|
|
|
66 |
|
67 |
def kidney_net(img):
|
68 |
lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
|
69 |
+
# img = cv2.resize(img,(224,224))
|
70 |
model = tf.keras.models.load_model("kidney.h5",compile=False)
|
71 |
result = model.predict(np.array([img]))
|
72 |
ans = np.argmax(result)
|
|
|
74 |
|
75 |
def skin_net(img):
|
76 |
lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
|
77 |
+
# img = cv2.resize(img,(224,224))
|
78 |
model = tf.keras.models.load_model("skin_cancer.h5",compile=False)
|
79 |
result = model.predict(np.array([img]))
|
80 |
ans = np.argmax(result)
|