NVASAIKUMAR commited on
Commit
5ddffe7
·
1 Parent(s): b9eabd1

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +26 -16
model.py CHANGED
@@ -2,13 +2,26 @@ import tensorflow as tf
2
  import cv2
3
  import numpy as np
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  def classify(img):
7
  im = img
8
  lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
9
  im = cv2.resize(im,(52,52))
10
- model = tf.keras.models.load_model("all-in-one.h5",compile=False)
11
- result = model.predict(np.array([im]))
12
  a = np.argmax(result)
13
  c=""
14
  if a==0:
@@ -28,52 +41,49 @@ def classify(img):
28
  return c
29
 
30
 
31
-
32
  def bone_net(img):
33
  # img = cv2.resize(img,(224,224))
34
  lt = ['not fractured', 'fractured']
35
- model = tf.keras.models.load_model("fracture.h5",compile=False)
36
- result = model.predict(np.array([img]))
37
- result = model.predict(np.array([img]))
38
  ans = np.argmax(result)
39
  return lt[ans]
40
 
41
  def brain_net(img):
42
  lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
43
  # img = cv2.resize(img,(52,52))
44
- model = tf.keras.models.load_model("brain.h5",compile=False)
45
- result = model.predict(np.array([img]))
46
  ans = np.argmax(result)
47
  return lt[ans]
48
 
49
  def chest_net(img):
50
  lt = ['PNEUMONIA', 'NORMAL']
51
  # img = cv2.resize(img,(224,224))
52
- model = tf.keras.models.load_model("chest.h5",compile=False)
53
- result = model.predict(np.array([img]))
54
  ans = np.argmax(result)
55
  return lt[ans]
56
 
57
  def Eye_net(img):
58
  lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
59
  # img = cv2.resize(img,(224,224))
60
- model = tf.keras.models.load_model("eye.h5",compile=False)
61
- result = model.predict(np.array([img]))
62
  ans = np.argmax(result)
63
  return lt[ans]
64
 
65
  def kidney_net(img):
66
  lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
67
  # img = cv2.resize(img,(224,224))
68
- model = tf.keras.models.load_model("kidney.h5",compile=False)
69
- result = model.predict(np.array([img]))
70
  ans = np.argmax(result)
71
  return lt[ans]
72
 
73
  def skin_net(img):
74
  lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
75
  # img = cv2.resize(img,(224,224))
76
- model = tf.keras.models.load_model("skin.h5",compile=False)
77
- result = model.predict(np.array([img]))
78
  ans = np.argmax(result)
79
  return lt[ans]
 
2
  import cv2
3
  import numpy as np
4
 
5
+ cls_model = tf.keras.models.load_model("all-in-one.h5",compile=False)
6
+
7
+ fract_model = tf.keras.models.load_model("fracture.h5",compile=False)
8
+
9
+ brain_model = tf.keras.models.load_model("brain.h5",compile=False)
10
+
11
+ chest_model = tf.keras.models.load_model("chest.h5",compile=False)
12
+
13
+ eye_model = tf.keras.models.load_model("eye.h5",compile=False)
14
+
15
+ kid_model = tf.keras.models.load_model("kidney.h5",compile=False)
16
+
17
+ skin_model = tf.keras.models.load_model("skin.h5",compile=False)
18
+
19
 
20
  def classify(img):
21
  im = img
22
  lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
23
  im = cv2.resize(im,(52,52))
24
+ result = cls_model.predict(np.array([im]))
 
25
  a = np.argmax(result)
26
  c=""
27
  if a==0:
 
41
  return c
42
 
43
 
 
44
  def bone_net(img):
45
  # img = cv2.resize(img,(224,224))
46
  lt = ['not fractured', 'fractured']
47
+
48
+ result = fract_model.predict(np.array([img]))
49
+ # result = model.predict(np.array([img]))
50
  ans = np.argmax(result)
51
  return lt[ans]
52
 
53
  def brain_net(img):
54
  lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
55
  # img = cv2.resize(img,(52,52))
56
+
57
+ result = brain_model.predict(np.array([img]))
58
  ans = np.argmax(result)
59
  return lt[ans]
60
 
61
  def chest_net(img):
62
  lt = ['PNEUMONIA', 'NORMAL']
63
  # img = cv2.resize(img,(224,224))
64
+ result = chest_model.predict(np.array([img]))
 
65
  ans = np.argmax(result)
66
  return lt[ans]
67
 
68
  def Eye_net(img):
69
  lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
70
  # img = cv2.resize(img,(224,224))
71
+
72
+ result = eye_model.predict(np.array([img]))
73
  ans = np.argmax(result)
74
  return lt[ans]
75
 
76
  def kidney_net(img):
77
  lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
78
  # img = cv2.resize(img,(224,224))
79
+
80
+ result = kid_model.predict(np.array([img]))
81
  ans = np.argmax(result)
82
  return lt[ans]
83
 
84
  def skin_net(img):
85
  lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
86
  # img = cv2.resize(img,(224,224))
87
+ result = skin_model.predict(np.array([img]))
 
88
  ans = np.argmax(result)
89
  return lt[ans]