Spaces:
Sleeping
Sleeping
Commit
·
5ddffe7
1
Parent(s):
b9eabd1
Update model.py
Browse files
model.py
CHANGED
@@ -2,13 +2,26 @@ import tensorflow as tf
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def classify(img):
|
7 |
im = img
|
8 |
lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
|
9 |
im = cv2.resize(im,(52,52))
|
10 |
-
|
11 |
-
result = model.predict(np.array([im]))
|
12 |
a = np.argmax(result)
|
13 |
c=""
|
14 |
if a==0:
|
@@ -28,52 +41,49 @@ def classify(img):
|
|
28 |
return c
|
29 |
|
30 |
|
31 |
-
|
32 |
def bone_net(img):
|
33 |
# img = cv2.resize(img,(224,224))
|
34 |
lt = ['not fractured', 'fractured']
|
35 |
-
|
36 |
-
result =
|
37 |
-
result = model.predict(np.array([img]))
|
38 |
ans = np.argmax(result)
|
39 |
return lt[ans]
|
40 |
|
41 |
def brain_net(img):
|
42 |
lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
|
43 |
# img = cv2.resize(img,(52,52))
|
44 |
-
|
45 |
-
result =
|
46 |
ans = np.argmax(result)
|
47 |
return lt[ans]
|
48 |
|
49 |
def chest_net(img):
|
50 |
lt = ['PNEUMONIA', 'NORMAL']
|
51 |
# img = cv2.resize(img,(224,224))
|
52 |
-
|
53 |
-
result = model.predict(np.array([img]))
|
54 |
ans = np.argmax(result)
|
55 |
return lt[ans]
|
56 |
|
57 |
def Eye_net(img):
|
58 |
lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
|
59 |
# img = cv2.resize(img,(224,224))
|
60 |
-
|
61 |
-
result =
|
62 |
ans = np.argmax(result)
|
63 |
return lt[ans]
|
64 |
|
65 |
def kidney_net(img):
|
66 |
lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
|
67 |
# img = cv2.resize(img,(224,224))
|
68 |
-
|
69 |
-
result =
|
70 |
ans = np.argmax(result)
|
71 |
return lt[ans]
|
72 |
|
73 |
def skin_net(img):
|
74 |
lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
|
75 |
# img = cv2.resize(img,(224,224))
|
76 |
-
|
77 |
-
result = model.predict(np.array([img]))
|
78 |
ans = np.argmax(result)
|
79 |
return lt[ans]
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
|
5 |
+
cls_model = tf.keras.models.load_model("all-in-one.h5",compile=False)
|
6 |
+
|
7 |
+
fract_model = tf.keras.models.load_model("fracture.h5",compile=False)
|
8 |
+
|
9 |
+
brain_model = tf.keras.models.load_model("brain.h5",compile=False)
|
10 |
+
|
11 |
+
chest_model = tf.keras.models.load_model("chest.h5",compile=False)
|
12 |
+
|
13 |
+
eye_model = tf.keras.models.load_model("eye.h5",compile=False)
|
14 |
+
|
15 |
+
kid_model = tf.keras.models.load_model("kidney.h5",compile=False)
|
16 |
+
|
17 |
+
skin_model = tf.keras.models.load_model("skin.h5",compile=False)
|
18 |
+
|
19 |
|
20 |
def classify(img):
|
21 |
im = img
|
22 |
lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
|
23 |
im = cv2.resize(im,(52,52))
|
24 |
+
result = cls_model.predict(np.array([im]))
|
|
|
25 |
a = np.argmax(result)
|
26 |
c=""
|
27 |
if a==0:
|
|
|
41 |
return c
|
42 |
|
43 |
|
|
|
44 |
def bone_net(img):
|
45 |
# img = cv2.resize(img,(224,224))
|
46 |
lt = ['not fractured', 'fractured']
|
47 |
+
|
48 |
+
result = fract_model.predict(np.array([img]))
|
49 |
+
# result = model.predict(np.array([img]))
|
50 |
ans = np.argmax(result)
|
51 |
return lt[ans]
|
52 |
|
53 |
def brain_net(img):
|
54 |
lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
|
55 |
# img = cv2.resize(img,(52,52))
|
56 |
+
|
57 |
+
result = brain_model.predict(np.array([img]))
|
58 |
ans = np.argmax(result)
|
59 |
return lt[ans]
|
60 |
|
61 |
def chest_net(img):
|
62 |
lt = ['PNEUMONIA', 'NORMAL']
|
63 |
# img = cv2.resize(img,(224,224))
|
64 |
+
result = chest_model.predict(np.array([img]))
|
|
|
65 |
ans = np.argmax(result)
|
66 |
return lt[ans]
|
67 |
|
68 |
def Eye_net(img):
|
69 |
lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
|
70 |
# img = cv2.resize(img,(224,224))
|
71 |
+
|
72 |
+
result = eye_model.predict(np.array([img]))
|
73 |
ans = np.argmax(result)
|
74 |
return lt[ans]
|
75 |
|
76 |
def kidney_net(img):
|
77 |
lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
|
78 |
# img = cv2.resize(img,(224,224))
|
79 |
+
|
80 |
+
result = kid_model.predict(np.array([img]))
|
81 |
ans = np.argmax(result)
|
82 |
return lt[ans]
|
83 |
|
84 |
def skin_net(img):
|
85 |
lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
|
86 |
# img = cv2.resize(img,(224,224))
|
87 |
+
result = skin_model.predict(np.array([img]))
|
|
|
88 |
ans = np.argmax(result)
|
89 |
return lt[ans]
|