NVASAIKUMAR commited on
Commit
efbf74e
·
1 Parent(s): 8a0e4e6

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +56 -0
  2. model.py +81 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import numpy as np
4
+ import streamlit as st
5
+ import requests
6
+ from PIL import Image
7
+ from model import classify
8
+ import cv2
9
+
10
+ @st.cache(allow_output_mutation=True)
11
+ # def get_model():
12
+ # return bone_frac()
13
+
14
+ # pred_model = get_model()
15
+ # pred_model=bone_frac()
16
+
17
+ def predict():
18
+ c=classify('tmp.jpg')
19
+ st.markdown('#### Predicted Captions:')
20
+ st.write(c)
21
+
22
+ st.title('Image Captioner')
23
+ img_url = st.text_input(label='Enter Image URL')
24
+
25
+ if (img_url != "") and (img_url != None):
26
+ img = Image.open(requests.get(img_url, stream=True).raw)
27
+ img = img.convert('RGB')
28
+ st.image(img)
29
+ img.save('tmp.jpg')
30
+ predict()
31
+ os.remove('tmp.jpg')
32
+
33
+ hide_streamlit_style = """
34
+ <style>
35
+ #MainMenu {visibility: hidden;}
36
+ footer {visibility: hidden;}
37
+ </style>
38
+ """
39
+ st.markdown(hide_streamlit_style, unsafe_allow_html=True)
40
+ # st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True)
41
+ img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg'])
42
+
43
+ if img_upload != None:
44
+ img = img_upload.read()
45
+ img = Image.open(io.BytesIO(img))
46
+ img = img.convert('RGB')
47
+ img=np.asarray(img)
48
+ print(img)
49
+ # img=cv2.imread(img)
50
+ # img.save('tmp.jpg')
51
+ st.image(img)
52
+ c=classify(img)
53
+ st.markdown('#### Predicted Captions:')
54
+ st.write(c)
55
+ # predict()
56
+ # os.remove('tmp.jpg')
model.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import cv2
3
+ import numpy as np
4
+
5
+
6
+ def classify(img):
7
+ im = img
8
+ lt = ["other","Bone","Brain","eye","kidney","chest","skin"]
9
+ im = cv2.resize(im,(52,52))
10
+ model = tf.keras.models.load_model("Models/all-in-one.h5")
11
+ result = model.predict(np.array([im]))
12
+ a = np.argmax(result)
13
+ c=""
14
+ if a==0:
15
+ return "Enter the medical Image"
16
+ if a==1:
17
+ c = bone_net(img)
18
+ if a==2:
19
+ c = brain_net(img)
20
+ if a==3:
21
+ c = Eye_net(img)
22
+ if a==4:
23
+ c = kidney_net(img)
24
+ if a==5:
25
+ c = chest_net(img)
26
+ if a==6:
27
+ c = skin_net(img)
28
+ return c
29
+
30
+
31
+
32
+ def bone_net(img):
33
+ img = cv2.resize(img,(224,224))
34
+ model = tf.keras.models.load_model("Models/Fracture_detection.h5")
35
+ result = model.predict(np.array([img]))
36
+ op=""
37
+ if result[0]<0.5:
38
+ op="Fracture"
39
+ else:
40
+ op="Normal"
41
+ return op
42
+
43
+ def brain_net(img):
44
+ lt = ['pituitary', 'notumor', 'meningioma', 'glioma']
45
+ img = cv2.resize(img,(224,224))
46
+ model = tf.keras.models.load_model("Models/model_brain_tumur.h5")
47
+ result = model.predict(np.array([img]))
48
+ ans = np.argmax(result)
49
+ return lt[ans]
50
+
51
+ def chest_net(img):
52
+ lt = ['PNEUMONIA', 'NORMAL']
53
+ img = cv2.resize(img,(224,224))
54
+ model = tf.keras.models.load_model("Models/chest_cls_model.h5")
55
+ result = model.predict(np.array([img]))
56
+ ans = np.argmax(result)
57
+ return lt[ans]
58
+
59
+ def Eye_net(img):
60
+ lt = ['glaucoma', 'normal', 'diabetic_retinopathy', 'cataract']
61
+ img = cv2.resize(img,(224,224))
62
+ model = tf.keras.models.load_model("Models/Eye_diseases.h5")
63
+ result = model.predict(np.array([img]))
64
+ ans = np.argmax(result)
65
+ return lt[ans]
66
+
67
+ def kidney_net(img):
68
+ lt = ['Cyst', 'Tumor', 'Stone', 'Normal']
69
+ img = cv2.resize(img,(224,224))
70
+ model = tf.keras.models.load_model("Models/kidney_stone.h5")
71
+ result = model.predict(np.array([img]))
72
+ ans = np.argmax(result)
73
+ return lt[ans]
74
+
75
+ def skin_net(img):
76
+ lt = ['pigmented benign keratosis', 'melanoma', 'vascular lesion', 'actinic keratosis', 'squamous cell carcinoma', 'basal cell carcinoma', 'seborrheic keratosis', 'dermatofibroma', 'nevus']
77
+ img = cv2.resize(img,(224,224))
78
+ model = tf.keras.models.load_model("Models/skin_cancer.h5")
79
+ result = model.predict(np.array([img]))
80
+ ans = np.argmax(result)
81
+ return lt[ans]