Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,364 Bytes
b443c25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import Tensor, nn
import transformers
from transformers import SamProcessor
from transformers import SamModel, SamVisionConfig, SamVisionConfig
from transformers import SamImageProcessor
from PIL import Image
# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam
class SamLayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
input_dtype = x.dtype
x = x.float()
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = x.to(dtype=input_dtype)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class ShortSamVisionNeck(nn.Module):
def __init__(self, config: SamVisionConfig):
super().__init__()
self.config = config
self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first")
def forward(self, hidden_states):
hidden_states = hidden_states.permute(0, 3, 1, 2)
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = hidden_states.permute(0,2,3,1)
return hidden_states
class SAMVisionTower(nn.Module):
def __init__(self, vision_tower, args):
super().__init__()
self.args = args
self.is_loaded = False
self.vision_tower_name = vision_tower
self.input_image_size = args.input_image_size
self.pixel_shuffle = getattr(args, 'add_pixel_shuffle', False)
self.freeze = args.freeze_vision
self.load_model()
def load_model(self):
if self.is_loaded:
return
self.image_processor= SamProcessor.from_pretrained("facebook/sam-vit-large")
sam_model = SamModel.from_pretrained("facebook/sam-vit-large").vision_encoder
sam_model.neck = ShortSamVisionNeck(sam_model.config)
self.image_processor.preprocess = self.image_processor.__call__
self.image_processor.image_mean = [0.485,0.456,0.406]
self.vision_tower = sam_model
if self.freeze:
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_feature = self.vision_tower(image.to(device=self.device).unsqueeze(0))
image_features.append(image_feature)
else:
image_features = self.vision_tower(images.to(device=self.device)).last_hidden_state.flatten(start_dim=1, end_dim=2).to(device=self.device)
if self.pixel_shuffle:
b, n, c = image_features.shape
h = w = int(n ** 0.5)
image_features = image_features.transpose(1,2).reshape(b, c, h, w)
image_features = nn.functional.pixel_unshuffle(image_features, 2)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return next(self.vision_tower.parameters()).dtype
@property
def device(self):
return next(self.vision_tower.parameters()).device
@property
def config(self):
# if self.is_loaded:
# return self.vision_tower.config
# else:
# return self.cfg_only
config_info = SamVisionConfig()
return SamVisionConfig()
@property
def hidden_size(self):
#return self.config.hidden_size
if self.pixel_shuffle:
hidden_size = 256 * 4
else:
hidden_size = 256
return hidden_size
@property
def num_patches(self):
# return (self.config.image_size // self.config.patch_size) ** 2
return self.config.num_patches
#main
if __name__ == "__main__":
sam_model = SamModel.from_pretrained("facebook/sam-vit-large").vision_encoder
#sam_model = SamModel.from_pretrained("facebook/sam-vit-large")
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-large")
for name, param in sam_model.named_parameters():
param.requires_grad = False
#raw_image = torch.rand(1, 3, 224, 224).to('cuda')
raw_image = Image.open('/lustre/fsw/portfolios/llmservice/users/fuxiaol/image/me.jpg').convert("RGB")
inputs = sam_processor(raw_image, return_tensors="pt")
#print(inputs)
#print(inputs['pixel_values'])
out = sam_model(inputs['pixel_values'])
print(out[0].size())
#vision_config = SamVisionConfig()
#print('=============')
#print(vision_config.hidden_size)
#print('=============')
#print(out)
#print(out)
#print(out)
#config_vision
#vision_config = SamVisionConfig()
#print(sam_model.layers)
#print(vision_config)
|