Spaces:
Runtime error
Runtime error
import torch | |
import matplotlib.pyplot as plt | |
from monai.networks.nets import SegResNet | |
from monai.inferers import sliding_window_inference | |
from monai.transforms import ( | |
Activations, | |
AsDiscrete, | |
Compose, | |
) | |
model = SegResNet( | |
blocks_down=[1, 2, 2, 4], | |
blocks_up=[1, 1, 1], | |
init_filters=16, | |
in_channels=4, | |
out_channels=3, | |
dropout_prob=0.2, | |
) | |
model.load_state_dict( | |
torch.load("weights/model.pt", map_location=torch.device('cpu')) | |
) | |
# define inference method | |
VAL_AMP = True | |
def inference(input): | |
def _compute(input): | |
return sliding_window_inference( | |
inputs=input, | |
roi_size=(240, 240, 160), | |
sw_batch_size=1, | |
predictor=model, | |
overlap=0.5, | |
) | |
if VAL_AMP: | |
with torch.cuda.amp.autocast(): | |
return _compute(input) | |
else: | |
return _compute(input) | |
post_trans = Compose( | |
[Activations(sigmoid=True), AsDiscrete(threshold=0.5)] | |
) | |
import gradio as gr | |
def load_sample1(): | |
return load_sample(1) | |
def load_sample2(): | |
return load_sample(2) | |
def load_sample3(): | |
return load_sample(3) | |
def load_sample4(): | |
return load_sample(4) | |
import torchvision | |
def load_sample(index): | |
#sample_index = index | |
sample = torch.load(f"samples/val{index-1}.pt") | |
imgs = [] | |
for i in range(4): | |
imgs.append(sample["image"][i, :, :, 70]) | |
pil_images = [] | |
for i in range(4): | |
pil_images.append(torchvision.transforms.functional.to_pil_image(imgs[i])) | |
imgs_label = [] | |
for i in range(3): | |
imgs_label.append(sample["label"][i, :, :, 70]) | |
pil_images_label = [] | |
for i in range(3): | |
pil_images_label.append(torchvision.transforms.functional.to_pil_image(imgs_label[i])) | |
return [index, pil_images[0], pil_images[1], pil_images[2], pil_images[3], | |
pil_images_label[0], pil_images_label[1], pil_images_label[2]] | |
def predict(sample_index): | |
print(sample_index) | |
sample = torch.load(f"samples/val{sample_index-1}.pt") | |
model.eval() | |
with torch.no_grad(): | |
# select one image to evaluate and visualize the model output | |
val_input = sample["image"].unsqueeze(0) | |
roi_size = (128, 128, 64) | |
sw_batch_size = 4 | |
val_output = inference(val_input) | |
val_output = post_trans(val_output[0]) | |
imgs_output = [] | |
for i in range(3): | |
imgs_output.append(val_output[i, :, :, 70]) | |
pil_images_output = [] | |
for i in range(3): | |
pil_images_output.append(torchvision.transforms.functional.to_pil_image(imgs_output[i])) | |
return [pil_images_output[0], pil_images_output[1], pil_images_output[2]] | |
with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", title="テスト" | |
) as demo: | |
sample_index = gr.State([]) | |
gr.HTML('<div style="font-size:12pt; text-align:center; color:yellow;">MNIST 分類器</div>') | |
with gr.Row(): | |
input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240)) | |
input_image1 = gr.Image(label="image channel 1", type="pil", shape=(240, 240)) | |
input_image2 = gr.Image(label="image channel 2", type="pil", shape=(240, 240)) | |
input_image3 = gr.Image(label="image channel 3", type="pil", shape=(240, 240)) | |
#input_image = gr.Image(label="画像入力", type="pil", image_mode="RGB", shape=(240, 240)) | |
with gr.Row(): | |
label_image0 = gr.Image(label="label channel 0", type="pil") | |
label_image1 = gr.Image(label="label channel 1", type="pil") | |
label_image2 = gr.Image(label="label channel 2", type="pil") | |
with gr.Row(): | |
example1_btn = gr.Button("Example 1") | |
example2_btn = gr.Button("Example 2") | |
example3_btn = gr.Button("Example 3") | |
example4_btn = gr.Button("Example 4") | |
example1_btn.click(fn=load_sample1, inputs=None, | |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3, | |
label_image0, label_image1, label_image2]) | |
example2_btn.click(fn=load_sample2, inputs=None, | |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3, | |
label_image0, label_image1, label_image2]) | |
example3_btn.click(fn=load_sample3, inputs=None, | |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3, | |
label_image0, label_image1, label_image2]) | |
example4_btn.click(fn=load_sample4, inputs=None, | |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3, | |
label_image0, label_image1, label_image2]) | |
with gr.Row(): | |
output_image0 = gr.Image(label="output channel 0", type="pil") | |
output_image1 = gr.Image(label="output channel 1", type="pil") | |
output_image2 = gr.Image(label="output channel 2", type="pil") | |
#output_label=gr.Label(label="予測確率", num_top_classes=3) | |
send_btn = gr.Button("予測する") | |
#gr.Examples(['2.png', '4.png'], inputs=input_image2) | |
send_btn.click(fn=predict, inputs=[sample_index], outputs=[output_image0, output_image1, output_image2]) | |
#demo.queue() | |
demo.launch(debug=True) | |
### EOF ### | |