ClassCat commited on
Commit
3d15f64
·
1 Parent(s): b960193

update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -7
app.py CHANGED
@@ -80,14 +80,18 @@ import torchvision
80
  def load_sample(index):
81
  #sample_index = index
82
 
83
- sample = torch.load(f"samples/val{index-1}.pt")
84
- imgs = []
85
  for i in range(4):
86
- imgs.append(sample["image"][i, :, :, 70])
87
 
88
- pil_images = []
89
- for i in range(4):
90
- pil_images.append(torchvision.transforms.functional.to_pil_image(imgs[i]))
 
 
 
 
 
91
 
92
  imgs_label = []
93
  for i in range(3):
@@ -97,9 +101,12 @@ def load_sample(index):
97
  for i in range(3):
98
  pil_images_label.append(torchvision.transforms.functional.to_pil_image(imgs_label[i]))
99
 
100
- return [index, pil_images[0], pil_images[1], pil_images[2], pil_images[3],
101
  pil_images_label[0], pil_images_label[1], pil_images_label[2]]
102
 
 
 
 
103
 
104
  def predict(sample_index):
105
  sample = torch.load(f"samples/val{sample_index-1}.pt")
@@ -132,10 +139,16 @@ with gr.Blocks(title="Brain tumor 3D segmentation with MONAIMNIST - ClassCat",
132
  gr.HTML("""<h4 style="color:navy;">1. Select an example, which includes input images and label images, by clicking "Example x" button.</h4>""")
133
 
134
  with gr.Row():
 
 
 
 
 
135
  input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
136
  input_image1 = gr.Image(label="image channel 1", type="pil", shape=(240, 240))
137
  input_image2 = gr.Image(label="image channel 2", type="pil", shape=(240, 240))
138
  input_image3 = gr.Image(label="image channel 3", type="pil", shape=(240, 240))
 
139
 
140
  with gr.Row():
141
  label_image0 = gr.Image(label="label channel 0", type="pil")
 
80
  def load_sample(index):
81
  #sample_index = index
82
 
83
+ image_filenames = []
 
84
  for i in range(4):
85
+ image_filenames[i] = f"thumbnails/image{index-1}_{j}.png"
86
 
87
+ sample = torch.load(f"samples/val{index-1}.pt")
88
+ #imgs = []
89
+ #for i in range(4):
90
+ # imgs.append(sample["image"][i, :, :, 70])
91
+
92
+ #pil_images = []
93
+ #for i in range(4):
94
+ # pil_images.append(torchvision.transforms.functional.to_pil_image(imgs[i]))
95
 
96
  imgs_label = []
97
  for i in range(3):
 
101
  for i in range(3):
102
  pil_images_label.append(torchvision.transforms.functional.to_pil_image(imgs_label[i]))
103
 
104
+ return [index, image_filenames[0], image_filenames[1], image_filenames[2], image_filenames[3],
105
  pil_images_label[0], pil_images_label[1], pil_images_label[2]]
106
 
107
+ #return [index, pil_images[0], pil_images[1], pil_images[2], pil_images[3],
108
+ # pil_images_label[0], pil_images_label[1], pil_images_label[2]]
109
+
110
 
111
  def predict(sample_index):
112
  sample = torch.load(f"samples/val{sample_index-1}.pt")
 
139
  gr.HTML("""<h4 style="color:navy;">1. Select an example, which includes input images and label images, by clicking "Example x" button.</h4>""")
140
 
141
  with gr.Row():
142
+ input_image0 = gr.Image(label="image channel 0", type="filepath", shape=(240, 240))
143
+ input_image1 = gr.Image(label="image channel 1", type="filepath", shape=(240, 240))
144
+ input_image2 = gr.Image(label="image channel 2", type="filepath", shape=(240, 240))
145
+ input_image3 = gr.Image(label="image channel 3", type="filepath", shape=(240, 240))
146
+ """
147
  input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
148
  input_image1 = gr.Image(label="image channel 1", type="pil", shape=(240, 240))
149
  input_image2 = gr.Image(label="image channel 2", type="pil", shape=(240, 240))
150
  input_image3 = gr.Image(label="image channel 3", type="pil", shape=(240, 240))
151
+ """
152
 
153
  with gr.Row():
154
  label_image0 = gr.Image(label="label channel 0", type="pil")