Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
@@ -84,33 +84,13 @@ def load_sample(index):
|
|
84 |
for i in range(4):
|
85 |
image_filenames.append(f"thumbnails/image{index-1}_{i}.png")
|
86 |
|
87 |
-
#sample = torch.load(f"samples/val{index-1}.pt")
|
88 |
-
#imgs = []
|
89 |
-
#for i in range(4):
|
90 |
-
# imgs.append(sample["image"][i, :, :, 70])
|
91 |
-
|
92 |
-
#pil_images = []
|
93 |
-
#for i in range(4):
|
94 |
-
# pil_images.append(torchvision.transforms.functional.to_pil_image(imgs[i]))
|
95 |
-
|
96 |
-
#imgs_label = []
|
97 |
-
#for i in range(3):
|
98 |
-
# imgs_label.append(sample["label"][i, :, :, 70])
|
99 |
-
|
100 |
label_filenames = []
|
101 |
for i in range(3):
|
102 |
label_filenames.append(f"thumbnails_label/label{index-1}_{i}.png")
|
103 |
|
104 |
-
#pil_images_label = []
|
105 |
-
#for i in range(3):
|
106 |
-
# pil_images_label.append(torchvision.transforms.functional.to_pil_image(imgs_label[i]))
|
107 |
-
|
108 |
return [index, image_filenames[0], image_filenames[1], image_filenames[2], image_filenames[3],
|
109 |
label_filenames[0], label_filenames[1], label_filenames[2]]
|
110 |
|
111 |
-
#return [index, pil_images[0], pil_images[1], pil_images[2], pil_images[3],
|
112 |
-
# pil_images_label[0], pil_images_label[1], pil_images_label[2]]
|
113 |
-
|
114 |
|
115 |
def predict(sample_index):
|
116 |
sample = torch.load(f"samples/val{sample_index-1}.pt")
|
@@ -147,22 +127,11 @@ with gr.Blocks(title="Brain tumor 3D segmentation with MONAIMNIST - ClassCat",
|
|
147 |
input_image1 = gr.Image(label="image channel 1", type="filepath", shape=(240, 240))
|
148 |
input_image2 = gr.Image(label="image channel 2", type="filepath", shape=(240, 240))
|
149 |
input_image3 = gr.Image(label="image channel 3", type="filepath", shape=(240, 240))
|
150 |
-
"""
|
151 |
-
input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
|
152 |
-
input_image1 = gr.Image(label="image channel 1", type="pil", shape=(240, 240))
|
153 |
-
input_image2 = gr.Image(label="image channel 2", type="pil", shape=(240, 240))
|
154 |
-
input_image3 = gr.Image(label="image channel 3", type="pil", shape=(240, 240))
|
155 |
-
"""
|
156 |
|
157 |
with gr.Row():
|
158 |
label_image0 = gr.Image(label="label channel 0", type="filepath", shape=(240, 240))
|
159 |
label_image1 = gr.Image(label="label channel 1", type="filepath", shape=(240, 240))
|
160 |
label_image2 = gr.Image(label="label channel 2", type="filepath", shape=(240, 240))
|
161 |
-
"""
|
162 |
-
label_image0 = gr.Image(label="label channel 0", type="pil")
|
163 |
-
label_image1 = gr.Image(label="label channel 1", type="pil")
|
164 |
-
label_image2 = gr.Image(label="label channel 2", type="pil")
|
165 |
-
"""
|
166 |
|
167 |
with gr.Row():
|
168 |
example1_btn = gr.Button("Example 1")
|
|
|
84 |
for i in range(4):
|
85 |
image_filenames.append(f"thumbnails/image{index-1}_{i}.png")
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
label_filenames = []
|
88 |
for i in range(3):
|
89 |
label_filenames.append(f"thumbnails_label/label{index-1}_{i}.png")
|
90 |
|
|
|
|
|
|
|
|
|
91 |
return [index, image_filenames[0], image_filenames[1], image_filenames[2], image_filenames[3],
|
92 |
label_filenames[0], label_filenames[1], label_filenames[2]]
|
93 |
|
|
|
|
|
|
|
94 |
|
95 |
def predict(sample_index):
|
96 |
sample = torch.load(f"samples/val{sample_index-1}.pt")
|
|
|
127 |
input_image1 = gr.Image(label="image channel 1", type="filepath", shape=(240, 240))
|
128 |
input_image2 = gr.Image(label="image channel 2", type="filepath", shape=(240, 240))
|
129 |
input_image3 = gr.Image(label="image channel 3", type="filepath", shape=(240, 240))
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
with gr.Row():
|
132 |
label_image0 = gr.Image(label="label channel 0", type="filepath", shape=(240, 240))
|
133 |
label_image1 = gr.Image(label="label channel 1", type="filepath", shape=(240, 240))
|
134 |
label_image2 = gr.Image(label="label channel 2", type="filepath", shape=(240, 240))
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
with gr.Row():
|
137 |
example1_btn = gr.Button("Example 1")
|