ClassCat commited on
Commit
eaaefb0
·
1 Parent(s): 4e0bd7f

update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -31
app.py CHANGED
@@ -84,33 +84,13 @@ def load_sample(index):
84
  for i in range(4):
85
  image_filenames.append(f"thumbnails/image{index-1}_{i}.png")
86
 
87
- #sample = torch.load(f"samples/val{index-1}.pt")
88
- #imgs = []
89
- #for i in range(4):
90
- # imgs.append(sample["image"][i, :, :, 70])
91
-
92
- #pil_images = []
93
- #for i in range(4):
94
- # pil_images.append(torchvision.transforms.functional.to_pil_image(imgs[i]))
95
-
96
- #imgs_label = []
97
- #for i in range(3):
98
- # imgs_label.append(sample["label"][i, :, :, 70])
99
-
100
  label_filenames = []
101
  for i in range(3):
102
  label_filenames.append(f"thumbnails_label/label{index-1}_{i}.png")
103
 
104
- #pil_images_label = []
105
- #for i in range(3):
106
- # pil_images_label.append(torchvision.transforms.functional.to_pil_image(imgs_label[i]))
107
-
108
  return [index, image_filenames[0], image_filenames[1], image_filenames[2], image_filenames[3],
109
  label_filenames[0], label_filenames[1], label_filenames[2]]
110
 
111
- #return [index, pil_images[0], pil_images[1], pil_images[2], pil_images[3],
112
- # pil_images_label[0], pil_images_label[1], pil_images_label[2]]
113
-
114
 
115
  def predict(sample_index):
116
  sample = torch.load(f"samples/val{sample_index-1}.pt")
@@ -147,22 +127,11 @@ with gr.Blocks(title="Brain tumor 3D segmentation with MONAIMNIST - ClassCat",
147
  input_image1 = gr.Image(label="image channel 1", type="filepath", shape=(240, 240))
148
  input_image2 = gr.Image(label="image channel 2", type="filepath", shape=(240, 240))
149
  input_image3 = gr.Image(label="image channel 3", type="filepath", shape=(240, 240))
150
- """
151
- input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
152
- input_image1 = gr.Image(label="image channel 1", type="pil", shape=(240, 240))
153
- input_image2 = gr.Image(label="image channel 2", type="pil", shape=(240, 240))
154
- input_image3 = gr.Image(label="image channel 3", type="pil", shape=(240, 240))
155
- """
156
 
157
  with gr.Row():
158
  label_image0 = gr.Image(label="label channel 0", type="filepath", shape=(240, 240))
159
  label_image1 = gr.Image(label="label channel 1", type="filepath", shape=(240, 240))
160
  label_image2 = gr.Image(label="label channel 2", type="filepath", shape=(240, 240))
161
- """
162
- label_image0 = gr.Image(label="label channel 0", type="pil")
163
- label_image1 = gr.Image(label="label channel 1", type="pil")
164
- label_image2 = gr.Image(label="label channel 2", type="pil")
165
- """
166
 
167
  with gr.Row():
168
  example1_btn = gr.Button("Example 1")
 
84
  for i in range(4):
85
  image_filenames.append(f"thumbnails/image{index-1}_{i}.png")
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  label_filenames = []
88
  for i in range(3):
89
  label_filenames.append(f"thumbnails_label/label{index-1}_{i}.png")
90
 
 
 
 
 
91
  return [index, image_filenames[0], image_filenames[1], image_filenames[2], image_filenames[3],
92
  label_filenames[0], label_filenames[1], label_filenames[2]]
93
 
 
 
 
94
 
95
  def predict(sample_index):
96
  sample = torch.load(f"samples/val{sample_index-1}.pt")
 
127
  input_image1 = gr.Image(label="image channel 1", type="filepath", shape=(240, 240))
128
  input_image2 = gr.Image(label="image channel 2", type="filepath", shape=(240, 240))
129
  input_image3 = gr.Image(label="image channel 3", type="filepath", shape=(240, 240))
 
 
 
 
 
 
130
 
131
  with gr.Row():
132
  label_image0 = gr.Image(label="label channel 0", type="filepath", shape=(240, 240))
133
  label_image1 = gr.Image(label="label channel 1", type="filepath", shape=(240, 240))
134
  label_image2 = gr.Image(label="label channel 2", type="filepath", shape=(240, 240))
 
 
 
 
 
135
 
136
  with gr.Row():
137
  example1_btn = gr.Button("Example 1")