Nada2001 commited on
Commit
f319570
·
1 Parent(s): 82b05d8

Upload 4 files

Browse files
Files changed (5) hide show
  1. .gitattributes +3 -0
  2. 107.png +3 -0
  3. 108.png +3 -0
  4. 109.png +3 -0
  5. app.py +100 -0
.gitattributes CHANGED
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ 107.png filter=lfs diff=lfs merge=lfs -text
36
+ 108.png filter=lfs diff=lfs merge=lfs -text
37
+ 109.png filter=lfs diff=lfs merge=lfs -text
107.png ADDED

Git LFS Details

  • SHA256: 985bbe83c87cc13cb323ee42644de02c9cc26186f7339590c7d957c1158d12aa
  • Pointer size: 132 Bytes
  • Size of remote file: 1.87 MB
108.png ADDED

Git LFS Details

  • SHA256: f3dfd2da7b64240571991fe466c1817656eefd48726b2b0fe6edb9f31adb672f
  • Pointer size: 132 Bytes
  • Size of remote file: 1.28 MB
109.png ADDED

Git LFS Details

  • SHA256: afb58f9483d7e245b5c88ac696db2678562ba1f3184033d6988b9644a6aadc47
  • Pointer size: 132 Bytes
  • Size of remote file: 1.66 MB
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ import tensorflow as tf
4
+ from PIL import Image
5
+ import numpy as np
6
+ import cv2
7
+ from huggingface_hub import from_pretrained_keras
8
+
9
+
10
+ try:
11
+ model=from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
12
+ except:
13
+ model=tf.keras.models.load_model("dental_xray_seg.h5")
14
+ pass
15
+
16
+ st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")
17
+
18
+ examples=["107.png","108.png","109.png"]
19
+ link='Check Out Our Github Repo ! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
20
+ st.markdown(link,unsafe_allow_html=True)
21
+
22
+
23
+ def load_image(image_file):
24
+ img = Image.open(image_file)
25
+ return img
26
+
27
+ def convert_one_channel(img):
28
+ #some images have 3 channels , although they are grayscale image
29
+ if len(img.shape)>2:
30
+ img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
31
+ return img
32
+ else:
33
+ return img
34
+
35
+ def convert_rgb(img):
36
+ #some images have 3 channels , although they are grayscale image
37
+ if len(img.shape)==2:
38
+ img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
39
+ return img
40
+ else:
41
+ return img
42
+
43
+
44
+ st.subheader("Upload Dental Panoramic X-ray Image Image")
45
+ image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
46
+
47
+
48
+ col1, col2, col3 = st.columns(3)
49
+ with col1:
50
+ ex=load_image(examples[0])
51
+ st.image(ex,width=200)
52
+ if st.button('Example 1'):
53
+ image_file=examples[0]
54
+
55
+ with col2:
56
+ ex1=load_image(examples[1])
57
+ st.image(ex1,width=200)
58
+ if st.button('Example 2'):
59
+ image_file=examples[1]
60
+
61
+
62
+ with col3:
63
+ ex2=load_image(examples[2])
64
+ st.image(ex2,width=200)
65
+ if st.button('Example 3'):
66
+ image_file=examples[2]
67
+
68
+
69
+ if image_file is not None:
70
+
71
+ img=load_image(image_file)
72
+
73
+ st.text("Making A Prediction ....")
74
+ st.image(img,width=850)
75
+
76
+ img=np.asarray(img)
77
+
78
+ img_cv=convert_one_channel(img)
79
+ img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
80
+ img_cv=np.float32(img_cv/255)
81
+
82
+ img_cv=np.reshape(img_cv,(1,512,512,1))
83
+ prediction=model.predict(img_cv)
84
+ predicted=prediction[0]
85
+ predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
86
+ mask=np.uint8(predicted*255)#
87
+ _, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
88
+ kernel =( np.ones((5,5), dtype=np.float32))
89
+ mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )
90
+ mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
91
+ cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
92
+ output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3)
93
+
94
+
95
+ if output is not None :
96
+ st.subheader("Predicted Image")
97
+ st.write(output.shape)
98
+ st.image(output,width=850)
99
+
100
+ st.text("DONE ! ....")