Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- .gitattributes +3 -0
- 107.png +3 -0
- 108.png +3 -0
- 109.png +3 -0
- app.py +100 -0
.gitattributes
CHANGED
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
107.png filter=lfs diff=lfs merge=lfs -text
|
36 |
+
108.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
109.png filter=lfs diff=lfs merge=lfs -text
|
107.png
ADDED
Git LFS Details
|
108.png
ADDED
Git LFS Details
|
109.png
ADDED
Git LFS Details
|
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
import tensorflow as tf
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from huggingface_hub import from_pretrained_keras
|
8 |
+
|
9 |
+
|
10 |
+
try:
|
11 |
+
model=from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
|
12 |
+
except:
|
13 |
+
model=tf.keras.models.load_model("dental_xray_seg.h5")
|
14 |
+
pass
|
15 |
+
|
16 |
+
st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")
|
17 |
+
|
18 |
+
examples=["107.png","108.png","109.png"]
|
19 |
+
link='Check Out Our Github Repo ! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
|
20 |
+
st.markdown(link,unsafe_allow_html=True)
|
21 |
+
|
22 |
+
|
23 |
+
def load_image(image_file):
|
24 |
+
img = Image.open(image_file)
|
25 |
+
return img
|
26 |
+
|
27 |
+
def convert_one_channel(img):
|
28 |
+
#some images have 3 channels , although they are grayscale image
|
29 |
+
if len(img.shape)>2:
|
30 |
+
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
31 |
+
return img
|
32 |
+
else:
|
33 |
+
return img
|
34 |
+
|
35 |
+
def convert_rgb(img):
|
36 |
+
#some images have 3 channels , although they are grayscale image
|
37 |
+
if len(img.shape)==2:
|
38 |
+
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
|
39 |
+
return img
|
40 |
+
else:
|
41 |
+
return img
|
42 |
+
|
43 |
+
|
44 |
+
st.subheader("Upload Dental Panoramic X-ray Image Image")
|
45 |
+
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
46 |
+
|
47 |
+
|
48 |
+
col1, col2, col3 = st.columns(3)
|
49 |
+
with col1:
|
50 |
+
ex=load_image(examples[0])
|
51 |
+
st.image(ex,width=200)
|
52 |
+
if st.button('Example 1'):
|
53 |
+
image_file=examples[0]
|
54 |
+
|
55 |
+
with col2:
|
56 |
+
ex1=load_image(examples[1])
|
57 |
+
st.image(ex1,width=200)
|
58 |
+
if st.button('Example 2'):
|
59 |
+
image_file=examples[1]
|
60 |
+
|
61 |
+
|
62 |
+
with col3:
|
63 |
+
ex2=load_image(examples[2])
|
64 |
+
st.image(ex2,width=200)
|
65 |
+
if st.button('Example 3'):
|
66 |
+
image_file=examples[2]
|
67 |
+
|
68 |
+
|
69 |
+
if image_file is not None:
|
70 |
+
|
71 |
+
img=load_image(image_file)
|
72 |
+
|
73 |
+
st.text("Making A Prediction ....")
|
74 |
+
st.image(img,width=850)
|
75 |
+
|
76 |
+
img=np.asarray(img)
|
77 |
+
|
78 |
+
img_cv=convert_one_channel(img)
|
79 |
+
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
|
80 |
+
img_cv=np.float32(img_cv/255)
|
81 |
+
|
82 |
+
img_cv=np.reshape(img_cv,(1,512,512,1))
|
83 |
+
prediction=model.predict(img_cv)
|
84 |
+
predicted=prediction[0]
|
85 |
+
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
86 |
+
mask=np.uint8(predicted*255)#
|
87 |
+
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
88 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
89 |
+
mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )
|
90 |
+
mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
|
91 |
+
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
92 |
+
output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3)
|
93 |
+
|
94 |
+
|
95 |
+
if output is not None :
|
96 |
+
st.subheader("Predicted Image")
|
97 |
+
st.write(output.shape)
|
98 |
+
st.image(output,width=850)
|
99 |
+
|
100 |
+
st.text("DONE ! ....")
|