Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,121 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from detect import detect
|
4 |
+
from PIL import Image
|
5 |
+
from io import *
|
6 |
+
import glob
|
7 |
+
from datetime import datetime
|
8 |
+
import os
|
9 |
+
import wget
|
10 |
+
import time
|
11 |
+
|
12 |
+
## CFG
|
13 |
+
cfg_model_path = "best.pt"
|
14 |
+
|
15 |
+
cfg_enable_url_download = True
|
16 |
+
if cfg_enable_url_download:
|
17 |
+
url = "https://archive.org/download/best_20230416/best.pt" #Configure this if you set cfg_enable_url_download to True
|
18 |
+
cfg_model_path = f"models/{url.split('/')[-1:][0]}" #config model path from url name
|
19 |
+
## END OF CFG
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def imageInput(device, src):
|
27 |
+
|
28 |
+
if src == 'Upload your own data.':
|
29 |
+
image_file = st.file_uploader("Upload An Image", type=['png', 'jpeg', 'jpg'])
|
30 |
+
col1, col2 = st.columns(2)
|
31 |
+
if image_file is not None:
|
32 |
+
img = Image.open(image_file)
|
33 |
+
with col1:
|
34 |
+
st.image(img, caption='Uploaded Image', use_column_width='always')
|
35 |
+
ts = datetime.timestamp(datetime.now())
|
36 |
+
imgpath = os.path.join('data/uploads', str(ts)+image_file.name)
|
37 |
+
outputpath = os.path.join('data/outputs', os.path.basename(imgpath))
|
38 |
+
with open(imgpath, mode="wb") as f:
|
39 |
+
f.write(image_file.getbuffer())
|
40 |
+
|
41 |
+
#call Model prediction--
|
42 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/yoloTrained.pt', force_reload=True)
|
43 |
+
model.cuda() if device == 'cuda' else model.cpu()
|
44 |
+
pred = model(imgpath)
|
45 |
+
pred.render() # render bbox in image
|
46 |
+
for im in pred.ims:
|
47 |
+
im_base64 = Image.fromarray(im)
|
48 |
+
im_base64.save(outputpath)
|
49 |
+
|
50 |
+
#--Display predicton
|
51 |
+
|
52 |
+
img_ = Image.open(outputpath)
|
53 |
+
with col2:
|
54 |
+
st.image(img_, caption='Model Prediction(s)', use_column_width='always')
|
55 |
+
|
56 |
+
elif src == 'From test set.':
|
57 |
+
# Image selector slider
|
58 |
+
imgpath = glob.glob('data/images/*')
|
59 |
+
imgsel = st.slider('Select random images from test set.', min_value=1, max_value=len(imgpath), step=1)
|
60 |
+
image_file = imgpath[imgsel-1]
|
61 |
+
submit = st.button("Predict!")
|
62 |
+
col1, col2 = st.columns(2)
|
63 |
+
with col1:
|
64 |
+
img = Image.open(image_file)
|
65 |
+
st.image(img, caption='Selected Image', use_column_width='always')
|
66 |
+
with col2:
|
67 |
+
if image_file is not None and submit:
|
68 |
+
#call Model prediction--
|
69 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path=cfg_model_path, force_reload=True)
|
70 |
+
pred = model(image_file)
|
71 |
+
pred.render() # render bbox in image
|
72 |
+
for im in pred.ims:
|
73 |
+
im_base64 = Image.fromarray(im)
|
74 |
+
im_base64.save(os.path.join('data/outputs', os.path.basename(image_file)))
|
75 |
+
#--Display predicton
|
76 |
+
img_ = Image.open(os.path.join('data/outputs', os.path.basename(image_file)))
|
77 |
+
st.image(img_, caption='Model Prediction(s)')
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def main():
|
86 |
+
# -- Sidebar
|
87 |
+
st.sidebar.title('⚙️Options')
|
88 |
+
datasrc = st.sidebar.radio("Select input source.", ['From test set.', 'Upload your own data.'])
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
option = st.sidebar.radio("Select input type.", ['Image', 'Video'])
|
93 |
+
if torch.cuda.is_available():
|
94 |
+
deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = False, index=1)
|
95 |
+
else:
|
96 |
+
deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = True, index=0)
|
97 |
+
# -- End of Sidebar
|
98 |
+
|
99 |
+
st.header('📦Obstacle Detection')
|
100 |
+
st.subheader('👈🏽 Select options left-haned menu bar.')
|
101 |
+
st.sidebar.markdown("https://github.com/thepbordin/Obstacle-Detection-for-Blind-people-Deployment")
|
102 |
+
if option == "Image":
|
103 |
+
imageInput(deviceoption, datasrc)
|
104 |
+
elif option == "Video":
|
105 |
+
videoInput(deviceoption, datasrc)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == '__main__':
|
110 |
+
|
111 |
+
main()
|
112 |
+
|
113 |
+
# Downlaod Model from url.
|
114 |
+
@st.cache
|
115 |
+
def loadModel():
|
116 |
+
start_dl = time.time()
|
117 |
+
model_file = wget.download(url, out="models/")
|
118 |
+
finished_dl = time.time()
|
119 |
+
print(f"Model Downloaded, ETA:{finished_dl-start_dl}")
|
120 |
+
if cfg_enable_url_download:
|
121 |
+
loadModel()
|