Nada2001 commited on
Commit
f59b834
·
1 Parent(s): 59c392f

Create hubconf.py

Browse files
Files changed (1) hide show
  1. hubconf.py +169 -0
hubconf.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
2
+ """
3
+ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
4
+
5
+ Usage:
6
+ import torch
7
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
8
+ model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
9
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
10
+ model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
11
+ """
12
+
13
+ import torch
14
+
15
+
16
+ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
17
+ """Creates or loads a YOLOv5 model
18
+
19
+ Arguments:
20
+ name (str): model name 'yolov5s' or path 'path/to/best.pt'
21
+ pretrained (bool): load pretrained weights into the model
22
+ channels (int): number of input channels
23
+ classes (int): number of model classes
24
+ autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
25
+ verbose (bool): print all information to screen
26
+ device (str, torch.device, None): device to use for model parameters
27
+
28
+ Returns:
29
+ YOLOv5 model
30
+ """
31
+ from pathlib import Path
32
+
33
+ from models.common import AutoShape, DetectMultiBackend
34
+ from models.experimental import attempt_load
35
+ from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
36
+ from utils.downloads import attempt_download
37
+ from utils.general import LOGGER, check_requirements, intersect_dicts, logging
38
+ from utils.torch_utils import select_device
39
+
40
+ if not verbose:
41
+ LOGGER.setLevel(logging.WARNING)
42
+ check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
43
+ name = Path(name)
44
+ path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
45
+ try:
46
+ device = select_device(device)
47
+ if pretrained and channels == 3 and classes == 80:
48
+ try:
49
+ model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
50
+ if autoshape:
51
+ if model.pt and isinstance(model.model, ClassificationModel):
52
+ LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. '
53
+ 'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
54
+ elif model.pt and isinstance(model.model, SegmentationModel):
55
+ LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. '
56
+ 'You will not be able to run inference with this model.')
57
+ else:
58
+ model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
59
+ except Exception:
60
+ model = attempt_load(path, device=device, fuse=False) # arbitrary model
61
+ else:
62
+ cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
63
+ model = DetectionModel(cfg, channels, classes) # create model
64
+ if pretrained:
65
+ ckpt = torch.load(attempt_download(path), map_location=device) # load
66
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
67
+ csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
68
+ model.load_state_dict(csd, strict=False) # load
69
+ if len(ckpt['model'].names) == classes:
70
+ model.names = ckpt['model'].names # set class names attribute
71
+ if not verbose:
72
+ LOGGER.setLevel(logging.INFO) # reset to default
73
+ return model.to(device)
74
+
75
+ except Exception as e:
76
+ help_url = 'https://github.com/ultralytics/yolov5/issues/36'
77
+ s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
78
+ raise Exception(s) from e
79
+
80
+
81
+ def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
82
+ # YOLOv5 custom or local model
83
+ return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
84
+
85
+
86
+ def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
87
+ # YOLOv5-nano model https://github.com/ultralytics/yolov5
88
+ return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
89
+
90
+
91
+ def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
92
+ # YOLOv5-small model https://github.com/ultralytics/yolov5
93
+ return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
94
+
95
+
96
+ def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
97
+ # YOLOv5-medium model https://github.com/ultralytics/yolov5
98
+ return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
99
+
100
+
101
+ def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
102
+ # YOLOv5-large model https://github.com/ultralytics/yolov5
103
+ return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
104
+
105
+
106
+ def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
107
+ # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
108
+ return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
109
+
110
+
111
+ def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
112
+ # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
113
+ return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
114
+
115
+
116
+ def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
117
+ # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
118
+ return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
119
+
120
+
121
+ def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
122
+ # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
123
+ return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
124
+
125
+
126
+ def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
127
+ # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
128
+ return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
129
+
130
+
131
+ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
132
+ # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
133
+ return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
134
+
135
+
136
+ if __name__ == '__main__':
137
+ import argparse
138
+ from pathlib import Path
139
+
140
+ import numpy as np
141
+ from PIL import Image
142
+
143
+ from utils.general import cv2, print_args
144
+
145
+ # Argparser
146
+ parser = argparse.ArgumentParser()
147
+ parser.add_argument('--model', type=str, default='yolov5s', help='model name')
148
+ opt = parser.parse_args()
149
+ print_args(vars(opt))
150
+
151
+ # Model
152
+ model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
153
+ # model = custom(path='path/to/model.pt') # custom
154
+
155
+ # Images
156
+ imgs = [
157
+ 'data/images/zidane.jpg', # filename
158
+ Path('data/images/zidane.jpg'), # Path
159
+ 'https://ultralytics.com/images/zidane.jpg', # URI
160
+ cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
161
+ Image.open('data/images/bus.jpg'), # PIL
162
+ np.zeros((320, 640, 3))] # numpy
163
+
164
+ # Inference
165
+ results = model(imgs, size=320) # batched inference
166
+
167
+ # Results
168
+ results.print()
169
+ results.save()