import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient(model='mistralai/Mistral-7B-Instruct-v0.2') # from fastapi import FastAPI # from fastapi.staticfiles import StaticFiles # from fastapi.responses import FileResponse # from transformers import pipeline # app = FastAPI() # pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small") # @app.get("/infer_t5") # def t5(input): # output = pipe_flan(input) # return {"output": output[0]["generated_text"]} # app.mount("/", StaticFiles(directory="static", html=True), name="static") # @app.get("/") # def index() -> FileResponse: # return FileResponse(path="/app/static/index.html", media_type="text/html") #from langchain import HuggingFaceHub #import os #from langchain.vectorstores import Chroma #from langchain.embeddings.huggingface import HuggingFaceEmbeddings # mistral_llm = HuggingFaceHub( # repo_id='mistralai/Mistral-7B-Instruct-v0.2', # model_kwargs= {'temperature':0.1, 'max_length':1024}, # ) # emb_model = "sentence-transformers/all-MiniLM-L6-v2" # embeddings = HuggingFaceEmbeddings( # model_name=emb_model, # cache_folder=os.getenv('SENTENCE_TRANSFORMERS_HOME') # ) # # The vectorstore to use to index the summaries # vectorstore = Chroma( # collection_name="mm_rag_mistral", # embedding_function=embeddings, # persist_directory="odoo_vector_store", # ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, hf_token, ): # asimilarity_search(message) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # response = "" # context= f'ceci est un context utilise le avec le context {context} ceci est lhistorique {history} repond à cette question:' outputs=client.text_generation( #system_message + context+ message, system_message + message, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, top_k=50, repetition_penalty=1.1 ) yield outputs app = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Textbox(label="Hugging Face Token", placeholder="Enter your Hugging Face token here"), ], css="footer{display:none !important}", ) #if __name__ == "__main__": app.queue() # Activer la file d'attente app.launch()