File size: 3,727 Bytes
409f81b
2c02a9e
409f81b
 
 
 
 
2c02a9e
409f81b
 
84f3457
2c02a9e
409f81b
2c02a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409f81b
 
 
 
 
 
 
 
2c02a9e
409f81b
 
2c02a9e
409f81b
 
 
 
 
2c02a9e
409f81b
 
 
 
 
 
 
 
 
 
 
 
 
2c02a9e
 
6cc8328
2c02a9e
6cc8328
 
2c02a9e
 
6cc8328
 
2c02a9e
6cc8328
 
 
2c02a9e
 
 
 
 
 
 
 
84f3457
2c02a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0385c04
 
84f3457
 
 
409f81b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import fitz
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import gradio as gr
from fastapi import FastAPI

# Initialize FastAPI
app = FastAPI()

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
    text = ""
    doc = fitz.open(pdf_path)
    for page_num in range(len(doc)):
        page = doc.load_page(page_num)
        text += page.get_text()
    return text

# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
    doc = Document(docx_path)
    text = "\n".join([para.text for para in doc.paragraphs])
    return text

# Initialize the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Hugging Face API token
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
    raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")

print(f"API Token: {api_token[:5]}...")

# Initialize the HuggingFace LLM
llm = HuggingFaceEndpoint(
    endpoint_url="https://api-inference.huggingface.co/models/gpt2",
    model_kwargs={"api_key": api_token}
)

# Initialize the HuggingFace embeddings
embedding = HuggingFaceEmbeddings()

# Load or create FAISS index
index_path = "faiss_index.pkl"
if os.path.exists(index_path):
    with open(index_path, "rb") as f:
        index = pickle.load(f)
else:
    # Create a new FAISS index if it doesn't exist
    index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
    with open(index_path, "wb") as f:
        pickle.dump(index, f)

def upload_files(files):
    for file in files:
        content = file.read()
        if file.name.endswith('.pdf'):
            with open("temp.pdf", "wb") as f:
                f.write(content)
            text = extract_text_from_pdf("temp.pdf")
        elif file.name.endswith('.docx'):
            with open("temp.docx", "wb") as f:
                f.write(content)
            text = extract_text_from_docx("temp.docx")
        else:
            return {"error": "Unsupported file format"}

        # Process the text and update FAISS index
        sentences = text.split("\n")
        embeddings = embedding_model.encode(sentences)
        index.add(np.array(embeddings))

    # Save the updated index
    with open(index_path, "wb") as f:
        pickle.dump(index, f)

    return "Files processed successfully"

def query_text(text):
    # Encode the query text
    query_embedding = embedding_model.encode([text])
    
    # Search the FAISS index
    D, I = index.search(np.array(query_embedding), k=5)
    
    top_documents = []
    for idx in I[0]:
        if idx != -1:  # Ensure that a valid index is found
            top_documents.append(f"Document {idx}")

    return top_documents

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Document Upload and Query System")
    
    with gr.Tab("Upload Files"):
        upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
        upload_button = gr.Button("Upload")
        upload_output = gr.Textbox()
        upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output)
    
    with gr.Tab("Query"):
        query = gr.Textbox(label="Enter your query")
        query_button = gr.Button("Search")
        query_output = gr.Textbox()
        query_button.click(fn=query_text, inputs=query, outputs=query_output)

demo.launch()

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8001)