Chatbot / app.py
NaimaAqeel's picture
Update app.py
0632240 verified
raw
history blame
3.15 kB
import os
import fitz
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
import gradio as gr
from typing import List
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from nltk.tokenize import sent_tokenize # Import for sentence segmentation
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
text = ""
try:
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text += page.get_text()
except Exception as e:
print(f"Error extracting text from PDF: {e}")
return text
# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
"""Extracts text from a Word document."""
text = ""
try:
doc = Document(docx_path)
text = "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
print(f"Error extracting text from DOCX: {e}")
return text
# Initialize the embedding model (same as before)
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Hugging Face API token (same as before)
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
# Define RAG models (replace with your chosen models)
generator_model_name = "facebook/bart-base"
retriever_model_name = "facebook/bart-base" # Can be the same as generator
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
# Load or create FAISS index (same as before)
index_path = "faiss_index.pkl"
document_texts_path = "document_texts.pkl"
document_texts = []
# ... (rest of the FAISS index loading logic)
def preprocess_text(text):
# ... (text preprocessing logic, e.g., sentence segmentation and optional stop word removal)
def upload_files(files):
global index, document_texts
try:
for file_path in files:
if file_path.endswith('.pdf'):
text = extract_text_from_pdf(file_path)
elif file_path.endswith('.docx'):
text = extract_text_from_docx(file_path)
else:
return "Unsupported file format"
# Preprocess text (call the new function)
sentences = preprocess_text(text)
# Encode sentences and add to FAISS index
embeddings = embedding_model.encode(sentences)
index.add(np.array(embeddings))
# Save the updated index and documents (same as before)
# ...
return "Files processed successfully"
except Exception as e:
print(f"Error processing files: {e}")