Chatbot / app.py
NaimaAqeel's picture
Update app.py
2b77a1d verified
raw
history blame
5.25 kB
import os
from docx import Document
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from nltk.tokenize import sent_tokenize
import torch
import gradio as gr
import pickle
import nltk
# Download NLTK punkt resource if not already downloaded
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
text = ""
try:
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text += page.get_text()
except Exception as e:
print(f"Error extracting text from PDF: {e}")
return text
# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
text = ""
try:
doc = Document(docx_path)
text = "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
print(f"Error extracting text from DOCX: {e}")
return text
# Initialize the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Hugging Face API token
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
# Define RAG models
generator_model_name = "facebook/bart-base"
retriever_model_name = "facebook/bart-base" # Can be the same as generator
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
# Initialize FAISS index using LangChain
hf_embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
# Load or create FAISS index
index_path = "faiss_index.pkl"
if os.path.exists(index_path):
with open(index_path, "rb") as f:
faiss_index = pickle.load(f)
print("Loaded FAISS index from faiss_index.pkl")
else:
faiss_index = FAISS(embedding_function=hf_embeddings)
def preprocess_text(text):
sentences = sent_tokenize(text)
return sentences
def upload_files(files):
global faiss_index
try:
for file in files:
if file.name.endswith('.pdf'):
text = extract_text_from_pdf(file.name)
elif file.name.endswith('.docx'):
text = extract_text_from_docx(file.name)
else:
return {"error": "Unsupported file format"}
# Preprocess text
sentences = preprocess_text(text)
# Encode sentences and add to FAISS index
embeddings = embedding_model.encode(sentences)
for sentence, embedding in zip(sentences, embeddings):
faiss_index.add_sentence(sentence, embedding)
# Save the updated index
with open(index_path, "wb") as f:
pickle.dump(faiss_index, f)
return {"message": "Files processed successfully"}
except Exception as e:
print(f"Error processing files: {e}")
return {"error": str(e)} # Provide informative error message
def process_and_query(state, files, question):
if files:
upload_result = upload_files(files)
if "error" in upload_result:
return upload_result
if question:
# Preprocess the question
question_embedding = embedding_model.encode([question])
# Search the FAISS index for similar passages
retrieved_results = faiss_index.similarity_search(question, k=5) # Retrieve top 5 passages
retrieved_passages = [result['text'] for result in retrieved_results]
# Use generator model to generate response based on question and retrieved passages
combined_input = question + " ".join(retrieved_passages)
inputs = generator_tokenizer(combined_input, return_tensors="pt")
with torch.no_grad():
generator_outputs = generator.generate(**inputs)
generated_text = generator_tokenizer.decode(generator_outputs[0], skip_special_tokens=True)
# Update conversation history
state["conversation"].append({"question": question, "answer": generated_text})
return {"message": generated_text, "conversation": state["conversation"]}
return {"error": "No question provided"}
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Document Upload and Query System")
with gr.Tab("Upload Files"):
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
upload_button = gr.Button("Upload")
upload_output = gr.Textbox()
upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output)
with gr.Tab("Query"):
query = gr.Textbox(label="Enter your query")
query_button = gr.Button("Search")
query_output = gr.Textbox()
query_button.click(fn=process_and_query, inputs=[query], outputs=query_output)
demo.launch()