Chatbot / app.py
NaimaAqeel's picture
Update app.py
6959bbb verified
raw
history blame
5.74 kB
import os
import gradio as gr
import fitz # PyMuPDF for PDF text extraction
from docx import Document # python-docx for DOCX text extraction
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from nltk.tokenize import sent_tokenize
import torch
import pickle
import nltk
import faiss
import numpy as np
# Download NLTK punkt tokenizer data if not already downloaded
nltk.download('punkt', quiet=True)
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
text = ""
try:
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text += page.get_text()
except Exception as e:
print(f"Error extracting text from PDF: {e}")
return text
# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
text = ""
try:
doc = Document(docx_path)
text = "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
print(f"Error extracting text from DOCX: {e}")
return text
# Initialize the SentenceTransformer model for embeddings
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize the HuggingFaceEmbeddings for LangChain
# Since we're not using it directly for index, initialization may be skipped here
# Initialize the FAISS index
class FAISSIndex:
def __init__(self, dimension):
self.dimension = dimension
self.index = faiss.IndexFlatL2(dimension)
def add_sentences(self, sentences, embeddings):
# Ensure embeddings are numpy arrays
embeddings = np.array(embeddings)
# Check if embeddings and sentences have the same length
assert len(embeddings) == len(sentences), "Number of embeddings should match number of sentences"
# Add each sentence embedding to the index
for emb in embeddings:
self.index.add(np.expand_dims(emb, axis=0))
def similarity_search(self, query_embedding, k=5):
# Search for similar embeddings in the index
D, I = self.index.search(query_embedding, k)
return [{"text": str(i), "score": float(d)} for i, d in zip(I[0], D[0])]
# Initialize the FAISS index instance
index_dimension = 512 # Dimensionality of SentenceTransformer embeddings
faiss_index = FAISSIndex(index_dimension)
def preprocess_text(text):
sentences = sent_tokenize(text)
return sentences
def upload_files(files):
try:
for file in files:
if isinstance(file, str): # Assuming `file` is a string (file path)
if file.endswith('.pdf'):
text = extract_text_from_pdf(file)
elif file.endswith('.docx'):
text = extract_text_from_docx(file)
else:
return {"error": "Unsupported file format"}
else:
return {"error": "Invalid file format: expected a string"}
# Preprocess text
sentences = preprocess_text(text)
# Encode sentences
embeddings = embedding_model.encode(sentences)
# Add sentences to FAISS index
faiss_index.add_sentences(sentences, embeddings)
# Save the updated index
with open("faiss_index.pkl", "wb") as f:
pickle.dump(faiss_index, f)
return {"message": "Files processed successfully"}
except Exception as e:
print(f"Error processing files: {e}")
return {"error": str(e)} # Provide informative error message
def process_and_query(state, files, question):
if files:
upload_result = upload_files(files)
if "error" in upload_result:
return upload_result
if question:
# Preprocess the question
question_embedding = embedding_model.encode([question])
# Search the FAISS index for similar passages
retrieved_results = faiss_index.similarity_search(question_embedding, k=5) # Retrieve top 5 passages
retrieved_passages = [result['text'] for result in retrieved_results]
# Initialize RAG generator model
generator_model_name = "facebook/bart-base"
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
# Use generator model to generate response based on question and retrieved passages
combined_input = question + " ".join(retrieved_passages)
inputs = generator_tokenizer(combined_input, return_tensors="pt")
with torch.no_grad():
generator_outputs = generator.generate(**inputs)
generated_text = generator_tokenizer.decode(generator_outputs[0], skip_special_tokens=True)
# Update conversation history
state["conversation"].append({"question": question, "answer": generated_text})
return {"message": generated_text, "conversation": state["conversation"]}
return {"error": "No question provided"}
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Document Upload and Query System")
with gr.Tab("Upload Files"):
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
upload_button = gr.Button("Upload")
upload_output = gr.Textbox()
upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output)
with gr.Tab("Query"):
query = gr.Textbox(label="Enter your query")
query_button = gr.Button("Search")
query_output = gr.Textbox()
query_button.click(fn=process_and_query, inputs=[query], outputs=query_output)
demo.launch()