Spaces:
Sleeping
Sleeping
import os | |
import faiss | |
import numpy as np | |
import PyPDF2 | |
import io | |
from docx import Document | |
from nltk.tokenize import sent_tokenize | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from sentence_transformers import SentenceTransformer | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
import gradio as gr | |
import pickle | |
# Download NLTK punkt tokenizer if not already downloaded | |
import nltk | |
nltk.download('punkt') | |
# Function to extract text from a PDF file | |
def extract_text_from_pdf(pdf_data): | |
text = "" | |
try: | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data)) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
except Exception as e: | |
print(f"Error extracting text from PDF: {e}") | |
return text | |
# Function to extract text from a Word document | |
def extract_text_from_docx(docx_data): | |
text = "" | |
try: | |
doc = Document(io.BytesIO(docx_data)) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
except Exception as e: | |
print(f"Error extracting text from DOCX: {e}") | |
return text | |
# Initialize Sentence Transformer model for embeddings | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Initialize Hugging Face API token | |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
if not api_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set") | |
# Initialize RAG models from Hugging Face | |
generator_model_name = "facebook/bart-base" | |
retriever_model_name = "facebook/bart-base" | |
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name) | |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name) | |
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name) | |
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name) | |
# Initialize FAISS index using LangChain | |
hf_embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') | |
# Load or create FAISS index | |
index_path = "faiss_index.pkl" | |
if os.path.exists(index_path): | |
with open(index_path, "rb") as f: | |
faiss_index = pickle.load(f) | |
print("Loaded FAISS index from faiss_index.pkl") | |
else: | |
faiss_index = FAISS(embedding_function=hf_embeddings) | |
def preprocess_text(text): | |
sentences = sent_tokenize(text) | |
return sentences | |
def upload_files(files): | |
global faiss_index | |
try: | |
for file in files: | |
if file.name.endswith('.pdf'): | |
text = extract_text_from_pdf(file.read()) | |
elif file.name.endswith('.docx'): | |
text = extract_text_from_docx(file.read()) | |
else: | |
return {"error": "Unsupported file format"} | |
# Preprocess text | |
sentences = preprocess_text(text) | |
# Encode sentences and add to FAISS index | |
embeddings = embedding_model.encode(sentences) | |
for embedding in embeddings: | |
faiss_index.add(np.expand_dims(embedding, axis=0)) | |
# Save the updated index | |
with open(index_path, "wb") as f: | |
pickle.dump(faiss_index, f) | |
return {"message": "Files processed successfully"} | |
except Exception as e: | |
print(f"Error processing files: {e}") | |
return {"error": str(e)} # Provide informative error message | |
def process_and_query(state, question): | |
if question: | |
# Preprocess the question | |
question_embedding = embedding_model.encode([question]) | |
# Search the FAISS index for similar passages | |
D, I = faiss_index.search(np.array(question_embedding), k=5) | |
retrieved_passages = [faiss_index.index_to_text(i) for i in I[0]] | |
# Use generator model to generate response based on question and retrieved passages | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context, | |
make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", | |
don't provide the wrong answer | |
Context:\n{context}\n | |
Question:\n{question}\n | |
Answer: | |
""" | |
combined_input = prompt_template.format(context=' '.join(retrieved_passages), question=question) | |
inputs = generator_tokenizer(combined_input, return_tensors="pt") | |
with torch.no_grad(): | |
generator_outputs = generator.generate(**inputs) | |
generated_text = generator_tokenizer.decode(generator_outputs[0], skip_special_tokens=True) | |
# Update conversation history | |
state.append({"question": question, "answer": generated_text}) | |
return {"message": generated_text, "conversation": state} | |
return {"error": "No question provided"} | |
# Initialize an empty state variable to store conversation history | |
state = [] | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Document Upload and Query System") | |
with gr.Tab("Upload Files"): | |
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files") | |
upload_button = gr.Button("Upload") | |
upload_output = gr.Textbox() | |
upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output) | |
with gr.Tab("Query"): | |
query = gr.Textbox(label="Enter your query") | |
query_button = gr.Button("Search") | |
query_output = gr.Textbox() | |
# Setup the click event with correct inputs and outputs | |
query_button.click(fn=process_and_query, inputs=[query], outputs=query_output) | |
demo.launch() | |