Chatbot / app.py
NaimaAqeel's picture
Update app.py
d382509 verified
raw
history blame
4.44 kB
import os
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
# Initialize the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize the HuggingFace LLM
llm = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/gpt2",
model_kwargs={"api_key": os.getenv('HUGGINGFACEHUB_API_TOKEN')}
)
# Initialize the HuggingFace embeddings
embedding = HuggingFaceEmbeddings()
# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
text = ""
try:
doc = Document(docx_path)
text = "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
print(f"Error extracting text from DOCX: {e}")
return text
# Load or create FAISS index
index_path = "faiss_index.pkl"
document_texts_path = "document_texts.pkl"
document_texts = []
if os.path.exists(index_path) and os.path.exists(document_texts_path):
try:
with open(index_path, "rb") as f:
index = pickle.load(f)
print("Loaded FAISS index from faiss_index.pkl")
with open(document_texts_path, "rb") as f:
document_texts = pickle.load(f)
print("Loaded document texts from document_texts.pkl")
except Exception as e:
print(f"Error loading FAISS index or document texts: {e}")
else:
# Create a new FAISS index if it doesn't exist
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
with open(index_path, "wb") as f:
pickle.dump(index, f)
print("Created new FAISS index and saved to faiss_index.pkl")
def preprocess_text(text):
# Add more preprocessing steps if necessary
return text.strip()
def upload_files(files):
global index, document_texts
try:
for file in files:
file_path = file.name # Get the file path from the NamedString object
if file_path.endswith('.docx'):
text = extract_text_from_docx(file_path)
# Process the text and update FAISS index
sentences = text.split("\n")
sentences = [preprocess_text(sentence) for sentence in sentences if sentence.strip()]
embeddings = embedding_model.encode(sentences)
index.add(np.array(embeddings))
document_texts.extend(sentences) # Store sentences for retrieval
# Save the updated index and documents
with open(index_path, "wb") as f:
pickle.dump(index, f)
print("Saved updated FAISS index to faiss_index.pkl")
with open(document_texts_path, "wb") as f:
pickle.dump(document_texts, f)
print("Saved updated document texts to document_texts.pkl")
return "Files processed successfully"
except Exception as e:
print(f"Error processing files: {e}")
return f"Error processing files: {e}"
def query_text(text):
try:
# Encode the query text
query_embedding = embedding_model.encode([text])
# Search the FAISS index
D, I = index.search(np.array(query_embedding), k=5)
top_documents = []
for idx in I[0]:
if idx != -1 and idx < len(document_texts): # Ensure that a valid index is found
top_documents.append(document_texts[idx]) # Append the actual sentences for the response
# Prepare the prompt
context = "\n".join(top_documents)
prompt = f"Context:\n{context}\n\nQuestion:\n{text}\n\nAnswer:\n"
# Query the LLM
response = llm(prompt)
return response
except Exception as e:
print(f"Error querying text: {e}")
return f"Error querying text: {e}"
# Sample Gradio integration (for illustration)
import gradio as gr
def main():
gr.Interface(
[upload_files, query_text],
["files", "text"],
["text", "text"],
title="Document Upload and Query System",
description="Upload DOCX files to build an index, then query for answers based on uploaded documents.",
).launch()
if __name__ == "__main__":
main()