Spaces:
Build error
Build error
import os | |
import gradio as gr | |
from docx import Document | |
import fitz # PyMuPDF for PDF text extraction | |
from sentence_transformers import SentenceTransformer | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from nltk.tokenize import sent_tokenize | |
import torch | |
import pickle | |
import nltk | |
import faiss | |
import numpy as np | |
# Ensure NLTK resources are downloaded | |
try: | |
nltk.data.find('tokenizers/punkt') | |
except LookupError: | |
nltk.download('punkt') | |
# Initialize the embedding model | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Hugging Face API token | |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
if not api_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set") | |
# Define RAG models | |
generator_model_name = "facebook/bart-base" | |
retriever_model_name = "facebook/bart-base" # Can be the same as generator | |
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name) | |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name) | |
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name) | |
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name) | |
# Initialize FAISS index using LangChain | |
hf_embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') | |
# Load or create FAISS index | |
index_path = "faiss_index.index" | |
if os.path.exists(index_path): | |
faiss_index = faiss.read_index(index_path) | |
print("Loaded FAISS index from faiss_index.index") | |
else: | |
# Create a new FAISS index | |
d = embedding_model.get_sentence_embedding_dimension() # Dimension of the embeddings | |
faiss_index = faiss.IndexFlatL2(d) # Using IndexFlatL2 for simplicity | |
state = { | |
"conversation": [], | |
"sentences": [] | |
} | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
try: | |
doc = fitz.open(pdf_path) | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text += page.get_text() | |
except Exception as e: | |
raise RuntimeError(f"Error extracting text from PDF '{pdf_path}': {e}") | |
return text | |
def extract_text_from_docx(docx_path): | |
text = "" | |
try: | |
doc = Document(docx_path) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
except Exception as e: | |
raise RuntimeError(f"Error extracting text from DOCX '{docx_path}': {e}") | |
return text | |
def preprocess_text(text): | |
sentences = sent_tokenize(text) | |
return sentences | |
def upload_files(files): | |
global state, faiss_index | |
try: | |
for file in files: | |
try: | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
if file_path.endswith('.pdf'): | |
text = extract_text_from_pdf(file_path) | |
elif file_path.endswith('.docx'): | |
text = extract_text_from_docx(file_path) | |
else: | |
return {"error": f"Unsupported file format: {file_path}"} | |
sentences = preprocess_text(text) | |
embeddings = embedding_model.encode(sentences) | |
faiss_index.add(np.array(embeddings).astype(np.float32)) # Add embeddings | |
state["sentences"].extend(sentences) | |
except Exception as e: | |
print(f"Error processing file '{file}': {e}") | |
return {"error": str(e)} | |
# Save the updated index | |
faiss.write_index(faiss_index, index_path) | |
return {"message": "Files processed successfully"} | |
except Exception as e: | |
print(f"General error processing files: {e}") | |
return {"error": str(e)} | |
def process_and_query(question): | |
global state, faiss_index | |
if not question: | |
return {"error": "No question provided"} | |
try: | |
question_embedding = embedding_model.encode([question]) | |
# Perform FAISS search | |
D, I = faiss_index.search(np.array(question_embedding).astype(np.float32), k=5) | |
retrieved_results = [state["sentences"][i] for i in I[0] if i != -1] # Ensure valid indices | |
# Generate response based on retrieved results | |
context = " ".join(retrieved_results) | |
# Enhanced prompt template | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context, | |
make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", | |
don't provide the wrong answer | |
Context:\n{context} | |
Question: \n{question} | |
Answer: | |
-------------------------------------------------- | |
Prompt Suggestions: | |
1. Summarize the primary theme of the context. | |
2. Elaborate on the crucial concepts highlighted in the context. | |
3. Pinpoint any supporting details or examples pertinent to the question. | |
4. Examine any recurring themes or patterns relevant to the question within the context. | |
5. Contrast differing viewpoints or elements mentioned in the context. | |
6. Explore the potential implications or outcomes of the information provided. | |
7. Assess the trustworthiness and validity of the information given. | |
8. Propose recommendations or advice based on the presented information. | |
9. Forecast likely future events or results stemming from the context. | |
10. Expand on the context or background information pertinent to the question. | |
11. Define any specialized terms or technical language used within the context. | |
12. Analyze any visual representations like charts or graphs in the context. | |
13. Highlight any restrictions or important considerations when responding to the question. | |
14. Examine any presuppositions or biases evident within the context. | |
15. Present alternate interpretations or viewpoints regarding the information provided. | |
16. Reflect on any moral or ethical issues raised by the context. | |
17. Investigate any cause-and-effect relationships identified in the context. | |
18. Uncover any questions or areas requiring further exploration. | |
19. Resolve any vague or conflicting information in the context. | |
20. Cite case studies or examples that demonstrate the concepts discussed in the context. | |
-------------------------------------------------- | |
Context:\n{context} | |
Question:\n{question} | |
Answer: | |
""" | |
combined_input = prompt_template.format(context=context, question=question) | |
inputs = generator_tokenizer(combined_input, return_tensors="pt", max_length=512, truncation=True) | |
with torch.no_grad(): | |
generator_outputs = generator.generate(**inputs) | |
generated_text = generator_tokenizer.decode(generator_outputs[0], skip_special_tokens=True) | |
# Update conversation history | |
state["conversation"].append({"question": question, "answer": generated_text}) | |
return {"message": generated_text, "conversation": state["conversation"]} | |
except Exception as e: | |
print(f"Error processing query: {e}") | |
return {"error": str(e)} | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Document Upload and Query System") | |
with gr.Tab("Upload Files"): | |
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files") | |
upload_button = gr.Button("Upload") | |
upload_output = gr.Textbox() | |
upload_button.click(fn=upload_files, inputs=[upload], outputs=upload_output) | |
with gr.Tab("Query"): | |
query = gr.Textbox(label="Enter your query") | |
query_button = gr.Button("Search") | |
query_output = gr.Textbox() | |
query_button.click(fn=process_and_query, inputs=[query], outputs=query_output) | |
demo.launch() | |