Spaces:
Sleeping
Sleeping
import os | |
import fitz | |
from docx import Document | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import faiss | |
import numpy as np | |
import pickle | |
import gradio as gr | |
from typing import List | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
# Function to extract text from a PDF file | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
try: | |
doc = fitz.open(pdf_path) | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text += page.get_text() | |
except Exception as e: | |
print(f"Error extracting text from PDF: {e}") | |
return text | |
# Function to extract text from a Word document | |
def extract_text_from_docx(docx_path): | |
text = "" | |
try: | |
doc = Document(docx_path) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
except Exception as e: | |
print(f"Error extracting text from DOCX: {e}") | |
return text | |
# Initialize the embedding model | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Hugging Face API token | |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
if not api_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set") | |
# Initialize RAG models from Hugging Face | |
generator_model_name = "facebook/bart-base" | |
retriever_model_name = "facebook/bart-base" | |
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name) | |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name) | |
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name) | |
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name) | |
# Initialize the HuggingFace LLM | |
llm = HuggingFaceEndpoint( | |
endpoint_url="https://api-inference.huggingface.co/models/gpt2", | |
model_kwargs={"api_key": api_token} | |
) | |
# Initialize the HuggingFace embeddings | |
embedding = HuggingFaceEmbeddings() | |
# Load or create FAISS index | |
index_path = "faiss_index.pkl" | |
document_texts_path = "document_texts.pkl" | |
document_texts = [] | |
if os.path.exists(index_path) and os.path.exists(document_texts_path): | |
try: | |
with open(index_path, "rb") as f: | |
index = pickle.load(f) | |
print("Loaded FAISS index from faiss_index.pkl") | |
with open(document_texts_path, "rb") as f: | |
document_texts = pickle.load(f) | |
print("Loaded document texts from document_texts.pkl") | |
except Exception as e: | |
print(f"Error loading FAISS index or document texts: {e}") | |
else: | |
# Create a new FAISS index if it doesn't exist | |
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension()) | |
with open(index_path, "wb") as f: | |
pickle.dump(index, f) | |
print("Created new FAISS index and saved to faiss_index.pkl") | |
def upload_files(files): | |
global index, document_texts | |
try: | |
for file in files: | |
file_path = file.name # Get the file path from the NamedString object | |
if file_path.endswith('.pdf'): | |
text = extract_text_from_pdf(file_path) | |
elif file_path.endswith('.docx'): | |
text = extract_text_from_docx(file_path) | |
else: | |
return "Unsupported file format" | |
print(f"Extracted text: {text[:100]}...") # Debug: Show the first 100 characters of the extracted text | |
# Process the text and update FAISS index | |
sentences = text.split("\n") | |
embeddings = embedding_model.encode(sentences) | |
print(f"Embeddings shape: {embeddings.shape}") # Debug: Show the shape of the embeddings | |
index.add(np.array(embeddings)) | |
document_texts.extend(sentences) # Store sentences for retrieval | |
# Save the updated index and documents | |
with open(index_path, "wb") as f: | |
pickle.dump(index, f) | |
print("Saved updated FAISS index to faiss_index.pkl") | |
with open(document_texts_path, "wb") as f: | |
pickle.dump(document_texts, f) | |
print("Saved updated document texts to document_texts.pkl") | |
return "Files processed successfully" | |
except Exception as e: | |
print(f"Error processing files: {e}") | |
return f"Error processing files: {e}" | |
def query_text(text): | |
try: | |
print(f"Query text: {text}") # Debug: Show the query text | |
# Encode the query text | |
query_embedding = embedding_model.encode([text]) | |
print(f"Query embedding shape: {query_embedding.shape}") # Debug: Show the shape of the query embedding | |
# Search the FAISS index | |
D, I = index.search(np.array(query_embedding), k=5) | |
print(f"Distances: {D}, Indices: {I}") # Debug: Show the distances and indices of the search results | |
top_documents = [] | |
for idx in I[0]: | |
if idx != -1 and idx < len(document_texts): # Ensure that a valid index is found | |
top_documents.append(document_texts[idx]) # Append the actual sentences for the response | |
else: | |
print(f"Invalid index found: {idx}") | |
return top_documents | |
except Exception as e: | |
print(f"Error querying text: {e}") | |
return f"Error querying text: {e}" | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Document Upload and Query System") | |
with gr.Tab("Upload Files"): | |
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files") | |
upload_button = gr.Button("Upload") | |
upload_output = gr.Textbox() | |
upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output) | |
with gr.Tab("Query"): | |
query = gr.Textbox(label="Enter your query") | |
query_button = gr.Button("Search") | |
query_output = gr.Textbox() | |
query_button.click(fn=query_text, inputs=query, outputs=query_output) | |
demo.launch() | |