Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -107,23 +107,23 @@ def upload_document(file):
|
|
107 |
|
108 |
return "Document uploaded and indexed successfully."
|
109 |
|
|
|
110 |
# ===============================
|
111 |
-
# GENERATION PIPELINE
|
112 |
# ===============================
|
113 |
-
|
|
|
114 |
|
115 |
def generate_answer_from_file(query, top_k=10):
|
116 |
if not document_texts:
|
117 |
return "No documents indexed yet."
|
118 |
|
119 |
-
query_vector = get_embeddings(query).astype("float32")
|
120 |
scores, indices = index.search(query_vector, k=top_k)
|
121 |
retrieved_chunks = [document_texts[i] for i in indices[0]]
|
122 |
context = "\n\n".join(retrieved_chunks)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
# Prompt Engineering
|
127 |
prompt = (
|
128 |
"You are a helpful assistant reading student notes or textbook passages.\n\n"
|
129 |
"Based on the context provided, answer the question accurately and clearly.\n\n"
|
@@ -140,6 +140,7 @@ def generate_answer_from_file(query, top_k=10):
|
|
140 |
result = qa_pipeline(prompt, max_length=512, do_sample=False)[0]['generated_text']
|
141 |
return result.strip()
|
142 |
|
|
|
143 |
# ===============================
|
144 |
# GRADIO INTERFACES
|
145 |
# ===============================
|
@@ -161,5 +162,3 @@ search_interface = gr.Interface(
|
|
161 |
|
162 |
app = gr.TabbedInterface([upload_interface, search_interface], ["Upload", "Ask"])
|
163 |
app.launch()
|
164 |
-
|
165 |
-
|
|
|
107 |
|
108 |
return "Document uploaded and indexed successfully."
|
109 |
|
110 |
+
|
111 |
# ===============================
|
112 |
+
# QA GENERATION PIPELINE
|
113 |
# ===============================
|
114 |
+
# Initialize text generation pipeline (you can use a more powerful model if needed)
|
115 |
+
qa_pipeline = pipeline("text-generation", model="gpt2")
|
116 |
|
117 |
def generate_answer_from_file(query, top_k=10):
|
118 |
if not document_texts:
|
119 |
return "No documents indexed yet."
|
120 |
|
121 |
+
query_vector = get_embeddings(query, is_query=True).astype("float32")
|
122 |
scores, indices = index.search(query_vector, k=top_k)
|
123 |
retrieved_chunks = [document_texts[i] for i in indices[0]]
|
124 |
context = "\n\n".join(retrieved_chunks)
|
125 |
|
126 |
+
# Prompt for the model
|
|
|
|
|
127 |
prompt = (
|
128 |
"You are a helpful assistant reading student notes or textbook passages.\n\n"
|
129 |
"Based on the context provided, answer the question accurately and clearly.\n\n"
|
|
|
140 |
result = qa_pipeline(prompt, max_length=512, do_sample=False)[0]['generated_text']
|
141 |
return result.strip()
|
142 |
|
143 |
+
|
144 |
# ===============================
|
145 |
# GRADIO INTERFACES
|
146 |
# ===============================
|
|
|
162 |
|
163 |
app = gr.TabbedInterface([upload_interface, search_interface], ["Upload", "Ask"])
|
164 |
app.launch()
|
|
|
|