Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import sys
|
3 |
import pickle
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
@@ -7,9 +6,10 @@ import fitz # PyMuPDF
|
|
7 |
from docx import Document
|
8 |
from transformers import AutoModel, AutoTokenizer
|
9 |
import faiss
|
|
|
10 |
|
11 |
# =============================================
|
12 |
-
# EMBEDDING MODEL SETUP
|
13 |
# =============================================
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -62,74 +62,4 @@ def extract_text_from_docx(docx_path):
|
|
62 |
doc = Document(docx_path)
|
63 |
text = "\n".join([para.text for para in doc.paragraphs])
|
64 |
except Exception as e:
|
65 |
-
print
|
66 |
-
return text
|
67 |
-
|
68 |
-
# =============================================
|
69 |
-
# CORE FUNCTIONALITY
|
70 |
-
# =============================================
|
71 |
-
def upload_files(files):
|
72 |
-
global index, document_texts
|
73 |
-
try:
|
74 |
-
for file in files:
|
75 |
-
file_path = file.name
|
76 |
-
if file_path.endswith('.pdf'):
|
77 |
-
text = extract_text_from_pdf(file_path)
|
78 |
-
elif file_path.endswith('.docx'):
|
79 |
-
text = extract_text_from_docx(file_path)
|
80 |
-
else:
|
81 |
-
continue
|
82 |
-
|
83 |
-
sentences = [s.strip() for s in text.split("\n") if s.strip()]
|
84 |
-
if not sentences:
|
85 |
-
continue
|
86 |
-
|
87 |
-
embeddings = get_embeddings(sentences)
|
88 |
-
index.add(embeddings)
|
89 |
-
document_texts.extend(sentences)
|
90 |
-
|
91 |
-
# Save updated index
|
92 |
-
with open(index_path, "wb") as f:
|
93 |
-
pickle.dump(index, f)
|
94 |
-
with open(document_texts_path, "wb") as f:
|
95 |
-
pickle.dump(document_texts, f)
|
96 |
-
|
97 |
-
return f"Processed {len(files)} files, added {len(sentences)} sentences"
|
98 |
-
except Exception as e:
|
99 |
-
return f"Error: {str(e)}"
|
100 |
-
|
101 |
-
def query_text(query):
|
102 |
-
try:
|
103 |
-
query_embedding = get_embeddings(query)
|
104 |
-
D, I = index.search(query_embedding, k=3)
|
105 |
-
|
106 |
-
results = []
|
107 |
-
for idx in I[0]:
|
108 |
-
if 0 <= idx < len(document_texts):
|
109 |
-
results.append(document_texts[idx])
|
110 |
-
|
111 |
-
return "\n\n---\n\n".join(results) if results else "No matches found"
|
112 |
-
except Exception as e:
|
113 |
-
return f"Query error: {str(e)}"
|
114 |
-
|
115 |
-
# =============================================
|
116 |
-
# GRADIO INTERFACE
|
117 |
-
# =============================================
|
118 |
-
with gr.Blocks() as demo:
|
119 |
-
gr.Markdown("## Document Search with Semantic Similarity")
|
120 |
-
|
121 |
-
with gr.Tab("Upload Documents"):
|
122 |
-
file_input = gr.File(file_count="multiple", file_types=[".pdf", ".docx"])
|
123 |
-
upload_btn = gr.Button("Process Files")
|
124 |
-
upload_output = gr.Textbox()
|
125 |
-
|
126 |
-
with gr.Tab("Search"):
|
127 |
-
query_input = gr.Textbox(label="Enter your query")
|
128 |
-
search_btn = gr.Button("Search")
|
129 |
-
results_output = gr.Textbox()
|
130 |
-
|
131 |
-
upload_btn.click(upload_files, inputs=file_input, outputs=upload_output)
|
132 |
-
search_btn.click(query_text, inputs=query_input, outputs=results_output)
|
133 |
-
|
134 |
-
if __name__ == "__main__":
|
135 |
-
demo.launch()
|
|
|
1 |
import os
|
|
|
2 |
import pickle
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
6 |
from docx import Document
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
import faiss
|
9 |
+
import torch
|
10 |
|
11 |
# =============================================
|
12 |
+
# EMBEDDING MODEL SETUP
|
13 |
# =============================================
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
62 |
doc = Document(docx_path)
|
63 |
text = "\n".join([para.text for para in doc.paragraphs])
|
64 |
except Exception as e:
|
65 |
+
print
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|