Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,6 @@ from typing import List
|
|
10 |
from langchain_community.llms import HuggingFaceEndpoint
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
-
from nltk.tokenize import sent_tokenize # Import for sentence segmentation
|
14 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
15 |
|
16 |
# Function to extract text from a PDF file
|
17 |
def extract_text_from_pdf(pdf_path):
|
@@ -25,9 +23,8 @@ def extract_text_from_pdf(pdf_path):
|
|
25 |
print(f"Error extracting text from PDF: {e}")
|
26 |
return text
|
27 |
|
28 |
-
# Function to extract text from a Word document
|
29 |
def extract_text_from_docx(docx_path):
|
30 |
-
"""Extracts text from a Word document."""
|
31 |
text = ""
|
32 |
try:
|
33 |
doc = Document(docx_path)
|
@@ -36,32 +33,29 @@ def extract_text_from_docx(docx_path):
|
|
36 |
print(f"Error extracting text from DOCX: {e}")
|
37 |
return text
|
38 |
|
39 |
-
|
40 |
-
# Initialize the embedding model
|
41 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
42 |
|
43 |
-
|
44 |
-
# Hugging Face API token
|
45 |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
46 |
if not api_token:
|
47 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
retriever_model_name = "facebook/bart-base"
|
53 |
-
|
54 |
-
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
|
55 |
-
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
|
56 |
-
|
57 |
-
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
|
58 |
-
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
|
59 |
-
|
60 |
|
61 |
# Load or create FAISS index
|
62 |
index_path = "faiss_index.pkl"
|
63 |
document_texts_path = "document_texts.pkl"
|
|
|
64 |
document_texts = []
|
|
|
65 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
66 |
try:
|
67 |
with open(index_path, "rb") as f:
|
@@ -79,16 +73,11 @@ else:
|
|
79 |
pickle.dump(index, f)
|
80 |
print("Created new FAISS index and saved to faiss_index.pkl")
|
81 |
|
82 |
-
|
83 |
-
def preprocess_text(text):
|
84 |
-
sentences = sent_tokenize(text)
|
85 |
-
return sentences
|
86 |
-
|
87 |
-
|
88 |
def upload_files(files):
|
89 |
global index, document_texts
|
90 |
try:
|
91 |
-
for
|
|
|
92 |
if file_path.endswith('.pdf'):
|
93 |
text = extract_text_from_pdf(file_path)
|
94 |
elif file_path.endswith('.docx'):
|
@@ -96,18 +85,52 @@ def upload_files(files):
|
|
96 |
else:
|
97 |
return "Unsupported file format"
|
98 |
|
99 |
-
#
|
100 |
-
sentences =
|
101 |
-
|
102 |
-
# Encode sentences and add to FAISS index
|
103 |
embeddings = embedding_model.encode(sentences)
|
104 |
index.add(np.array(embeddings))
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return "Files processed successfully"
|
109 |
except Exception as e:
|
110 |
print(f"Error processing files: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
|
113 |
|
|
|
10 |
from langchain_community.llms import HuggingFaceEndpoint
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
13 |
|
14 |
# Function to extract text from a PDF file
|
15 |
def extract_text_from_pdf(pdf_path):
|
|
|
23 |
print(f"Error extracting text from PDF: {e}")
|
24 |
return text
|
25 |
|
26 |
+
# Function to extract text from a Word document
|
27 |
def extract_text_from_docx(docx_path):
|
|
|
28 |
text = ""
|
29 |
try:
|
30 |
doc = Document(docx_path)
|
|
|
33 |
print(f"Error extracting text from DOCX: {e}")
|
34 |
return text
|
35 |
|
36 |
+
# Initialize the embedding model
|
|
|
37 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
38 |
|
39 |
+
# Hugging Face API token
|
|
|
40 |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
41 |
if not api_token:
|
42 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
43 |
|
44 |
+
# Initialize the HuggingFace LLM
|
45 |
+
llm = HuggingFaceEndpoint(
|
46 |
+
endpoint_url="https://api-inference.huggingface.co/models/gpt2",
|
47 |
+
model_kwargs={"api_key": api_token}
|
48 |
+
)
|
49 |
|
50 |
+
# Initialize the HuggingFace embeddings
|
51 |
+
embedding = HuggingFaceEmbeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Load or create FAISS index
|
54 |
index_path = "faiss_index.pkl"
|
55 |
document_texts_path = "document_texts.pkl"
|
56 |
+
|
57 |
document_texts = []
|
58 |
+
|
59 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
60 |
try:
|
61 |
with open(index_path, "rb") as f:
|
|
|
73 |
pickle.dump(index, f)
|
74 |
print("Created new FAISS index and saved to faiss_index.pkl")
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def upload_files(files):
|
77 |
global index, document_texts
|
78 |
try:
|
79 |
+
for file in files:
|
80 |
+
file_path = file.name # Get the file path from the NamedString object
|
81 |
if file_path.endswith('.pdf'):
|
82 |
text = extract_text_from_pdf(file_path)
|
83 |
elif file_path.endswith('.docx'):
|
|
|
85 |
else:
|
86 |
return "Unsupported file format"
|
87 |
|
88 |
+
# Process the text and update FAISS index
|
89 |
+
sentences = text.split("\n")
|
|
|
|
|
90 |
embeddings = embedding_model.encode(sentences)
|
91 |
index.add(np.array(embeddings))
|
92 |
+
document_texts.append(text)
|
93 |
+
|
94 |
+
# Save the updated index and documents
|
95 |
+
with open(index_path, "wb") as f:
|
96 |
+
pickle.dump(index, f)
|
97 |
+
print("Saved updated FAISS index to faiss_index.pkl")
|
98 |
+
with open(document_texts_path, "wb") as f:
|
99 |
+
pickle.dump(document_texts, f)
|
100 |
+
print("Saved updated document texts to document_texts.pkl")
|
101 |
+
|
102 |
return "Files processed successfully"
|
103 |
except Exception as e:
|
104 |
print(f"Error processing files: {e}")
|
105 |
+
return f"Error processing files: {e}"
|
106 |
+
|
107 |
+
def query_text(text):
|
108 |
+
try:
|
109 |
+
# Encode the query text
|
110 |
+
query_embedding = embedding_model.encode([text])
|
111 |
+
|
112 |
+
# Search the FAISS index
|
113 |
+
D, I = index.search(np.array(query_embedding), k=5)
|
114 |
+
|
115 |
+
top_documents = []
|
116 |
+
for idx in I[0]:
|
117 |
+
if idx != -1 and idx < len(document_texts): # Ensure that a valid index is found
|
118 |
+
top_documents.append(document_texts[idx])
|
119 |
+
else:
|
120 |
+
print(f"Invalid index found: {idx}")
|
121 |
+
return top_documents
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Error querying text: {e}")
|
124 |
+
return f"Error querying text: {e}"
|
125 |
+
|
126 |
+
# Create Gradio interface
|
127 |
+
with gr.Blocks() as demo:
|
128 |
+
gr.Markdown("## Document Upload and Query System")
|
129 |
+
|
130 |
+
with gr.Tab("Upload Files"):
|
131 |
+
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
|
132 |
+
upload_button = gr.Button("Upload")
|
133 |
+
upload_output = gr
|
134 |
|
135 |
|
136 |
|