Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -3,47 +3,34 @@ import sys
|
|
3 |
import pickle
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
6 |
-
from typing import List
|
7 |
import fitz # PyMuPDF
|
8 |
from docx import Document
|
9 |
-
from transformers import AutoModel, AutoTokenizer
|
10 |
import faiss
|
11 |
|
12 |
# =============================================
|
13 |
-
#
|
14 |
# =============================================
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
# =============================================
|
26 |
-
#
|
27 |
# =============================================
|
28 |
-
# Initialize embedding model (using direct transformers as fallback)
|
29 |
-
try:
|
30 |
-
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
31 |
-
except Exception as e:
|
32 |
-
print(f"Failed to load SentenceTransformer, falling back to direct transformers: {e}")
|
33 |
-
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
34 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
-
embedding_model = AutoModel.from_pretrained(model_name)
|
36 |
-
|
37 |
-
def get_embeddings(texts):
|
38 |
-
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
39 |
-
outputs = embedding_model(**inputs)
|
40 |
-
return outputs.last_hidden_state.mean(dim=1).detach().numpy()
|
41 |
-
|
42 |
-
# Initialize FAISS index
|
43 |
index_path = "faiss_index.pkl"
|
44 |
document_texts_path = "document_texts.pkl"
|
45 |
document_texts = []
|
46 |
|
|
|
47 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
48 |
try:
|
49 |
with open(index_path, "rb") as f:
|
@@ -51,10 +38,10 @@ if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
|
51 |
with open(document_texts_path, "rb") as f:
|
52 |
document_texts = pickle.load(f)
|
53 |
except Exception as e:
|
54 |
-
print(f"Error loading
|
55 |
-
index = faiss.IndexFlatIP(
|
56 |
else:
|
57 |
-
index = faiss.IndexFlatIP(
|
58 |
|
59 |
# =============================================
|
60 |
# DOCUMENT PROCESSING FUNCTIONS
|
@@ -93,14 +80,12 @@ def upload_files(files):
|
|
93 |
else:
|
94 |
continue
|
95 |
|
96 |
-
sentences = [s for s in text.split("\n") if s.strip()]
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
index.add(np.array(embeddings))
|
104 |
document_texts.extend(sentences)
|
105 |
|
106 |
# Save updated index
|
@@ -115,12 +100,9 @@ def upload_files(files):
|
|
115 |
|
116 |
def query_text(query):
|
117 |
try:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
query_embedding = get_embeddings([query])
|
122 |
-
|
123 |
-
D, I = index.search(np.array(query_embedding), k=3)
|
124 |
results = []
|
125 |
for idx in I[0]:
|
126 |
if 0 <= idx < len(document_texts):
|
@@ -149,4 +131,5 @@ with gr.Blocks() as demo:
|
|
149 |
upload_btn.click(upload_files, inputs=file_input, outputs=upload_output)
|
150 |
search_btn.click(query_text, inputs=query_input, outputs=results_output)
|
151 |
|
152 |
-
|
|
|
|
3 |
import pickle
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
|
|
6 |
import fitz # PyMuPDF
|
7 |
from docx import Document
|
8 |
+
from transformers import AutoModel, AutoTokenizer
|
9 |
import faiss
|
10 |
|
11 |
# =============================================
|
12 |
+
# EMBEDDING MODEL SETUP (NO sentence-transformers dependency)
|
13 |
# =============================================
|
14 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
embedding_model = AutoModel.from_pretrained(model_name)
|
17 |
+
|
18 |
+
def get_embeddings(texts):
|
19 |
+
if isinstance(texts, str):
|
20 |
+
texts = [texts]
|
21 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = embedding_model(**inputs)
|
24 |
+
return outputs.last_hidden_state[:, 0].cpu().numpy()
|
25 |
|
26 |
# =============================================
|
27 |
+
# DOCUMENT STORAGE SETUP
|
28 |
# =============================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
index_path = "faiss_index.pkl"
|
30 |
document_texts_path = "document_texts.pkl"
|
31 |
document_texts = []
|
32 |
|
33 |
+
embedding_dim = 384 # Dimension for all-MiniLM-L6-v2
|
34 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
35 |
try:
|
36 |
with open(index_path, "rb") as f:
|
|
|
38 |
with open(document_texts_path, "rb") as f:
|
39 |
document_texts = pickle.load(f)
|
40 |
except Exception as e:
|
41 |
+
print(f"Error loading index: {e}")
|
42 |
+
index = faiss.IndexFlatIP(embedding_dim)
|
43 |
else:
|
44 |
+
index = faiss.IndexFlatIP(embedding_dim)
|
45 |
|
46 |
# =============================================
|
47 |
# DOCUMENT PROCESSING FUNCTIONS
|
|
|
80 |
else:
|
81 |
continue
|
82 |
|
83 |
+
sentences = [s.strip() for s in text.split("\n") if s.strip()]
|
84 |
+
if not sentences:
|
85 |
+
continue
|
86 |
+
|
87 |
+
embeddings = get_embeddings(sentences)
|
88 |
+
index.add(embeddings)
|
|
|
|
|
89 |
document_texts.extend(sentences)
|
90 |
|
91 |
# Save updated index
|
|
|
100 |
|
101 |
def query_text(query):
|
102 |
try:
|
103 |
+
query_embedding = get_embeddings(query)
|
104 |
+
D, I = index.search(query_embedding, k=3)
|
105 |
+
|
|
|
|
|
|
|
106 |
results = []
|
107 |
for idx in I[0]:
|
108 |
if 0 <= idx < len(document_texts):
|
|
|
131 |
upload_btn.click(upload_files, inputs=file_input, outputs=upload_output)
|
132 |
search_btn.click(query_text, inputs=query_input, outputs=results_output)
|
133 |
|
134 |
+
if __name__ == "__main__":
|
135 |
+
demo.launch()
|