Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,9 @@ import numpy as np
|
|
7 |
import pickle
|
8 |
import gradio as gr
|
9 |
from typing import List
|
|
|
|
|
|
|
10 |
|
11 |
# Function to extract text from a PDF file
|
12 |
def extract_text_from_pdf(pdf_path):
|
@@ -31,29 +34,26 @@ api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
|
31 |
if not api_token:
|
32 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize the HuggingFace embeddings
|
35 |
-
embedding =
|
36 |
|
37 |
# Load or create FAISS index
|
38 |
index_path = "faiss_index.pkl"
|
39 |
-
document_texts_path = "document_texts.pkl"
|
40 |
-
|
41 |
if os.path.exists(index_path):
|
42 |
with open(index_path, "rb") as f:
|
43 |
-
index = pickle.load(f)
|
44 |
else:
|
45 |
# Create a new FAISS index if it doesn't exist
|
46 |
-
index = faiss.IndexFlatL2(
|
47 |
-
with open(index_path, "wb") as f:
|
48 |
-
pickle.dump(index, f)
|
49 |
-
|
50 |
-
if os.path.exists(document_texts_path):
|
51 |
-
with open(document_texts_path, "rb") as f:
|
52 |
-
document_texts = pickle.load(f)
|
53 |
-
else:
|
54 |
document_texts = []
|
55 |
-
with open(
|
56 |
-
pickle.dump(document_texts, f)
|
57 |
|
58 |
def upload_files(files):
|
59 |
global index, document_texts
|
@@ -68,25 +68,23 @@ def upload_files(files):
|
|
68 |
f.write(content)
|
69 |
text = extract_text_from_docx("temp.docx")
|
70 |
else:
|
71 |
-
return
|
72 |
|
73 |
# Process the text and update FAISS index
|
74 |
sentences = text.split("\n")
|
75 |
-
embeddings =
|
76 |
index.add(np.array(embeddings))
|
77 |
document_texts.append(text)
|
78 |
|
79 |
# Save the updated index and documents
|
80 |
with open(index_path, "wb") as f:
|
81 |
-
pickle.dump(index, f)
|
82 |
-
with open(document_texts_path, "wb") as f:
|
83 |
-
pickle.dump(document_texts, f)
|
84 |
|
85 |
return "Files processed successfully"
|
86 |
|
87 |
def query_text(text):
|
88 |
# Encode the query text
|
89 |
-
query_embedding =
|
90 |
|
91 |
# Search the FAISS index
|
92 |
D, I = index.search(np.array(query_embedding), k=5)
|
@@ -116,6 +114,9 @@ with gr.Blocks() as demo:
|
|
116 |
|
117 |
demo.launch()
|
118 |
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
|
|
|
7 |
import pickle
|
8 |
import gradio as gr
|
9 |
from typing import List
|
10 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
|
14 |
# Function to extract text from a PDF file
|
15 |
def extract_text_from_pdf(pdf_path):
|
|
|
34 |
if not api_token:
|
35 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
36 |
|
37 |
+
# Initialize the HuggingFace LLM
|
38 |
+
llm = HuggingFaceEndpoint(
|
39 |
+
endpoint_url="https://api-inference.huggingface.co/models/gpt2",
|
40 |
+
model_kwargs={"api_key": api_token}
|
41 |
+
)
|
42 |
+
|
43 |
# Initialize the HuggingFace embeddings
|
44 |
+
embedding = HuggingFaceEmbeddings()
|
45 |
|
46 |
# Load or create FAISS index
|
47 |
index_path = "faiss_index.pkl"
|
|
|
|
|
48 |
if os.path.exists(index_path):
|
49 |
with open(index_path, "rb") as f:
|
50 |
+
index, document_texts = pickle.load(f)
|
51 |
else:
|
52 |
# Create a new FAISS index if it doesn't exist
|
53 |
+
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
document_texts = []
|
55 |
+
with open(index_path, "wb") as f:
|
56 |
+
pickle.dump((index, document_texts), f)
|
57 |
|
58 |
def upload_files(files):
|
59 |
global index, document_texts
|
|
|
68 |
f.write(content)
|
69 |
text = extract_text_from_docx("temp.docx")
|
70 |
else:
|
71 |
+
return "Unsupported file format"
|
72 |
|
73 |
# Process the text and update FAISS index
|
74 |
sentences = text.split("\n")
|
75 |
+
embeddings = embedding_model.encode(sentences)
|
76 |
index.add(np.array(embeddings))
|
77 |
document_texts.append(text)
|
78 |
|
79 |
# Save the updated index and documents
|
80 |
with open(index_path, "wb") as f:
|
81 |
+
pickle.dump((index, document_texts), f)
|
|
|
|
|
82 |
|
83 |
return "Files processed successfully"
|
84 |
|
85 |
def query_text(text):
|
86 |
# Encode the query text
|
87 |
+
query_embedding = embedding_model.encode([text])
|
88 |
|
89 |
# Search the FAISS index
|
90 |
D, I = index.search(np.array(query_embedding), k=5)
|
|
|
114 |
|
115 |
demo.launch()
|
116 |
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
|
121 |
|
122 |
|