Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import io
|
|
3 |
import fitz # PyMuPDF
|
4 |
import PyPDF2
|
5 |
from docx import Document
|
6 |
-
from dotenv import load_dotenv
|
7 |
import streamlit as st
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from langchain.prompts import PromptTemplate
|
@@ -13,16 +12,13 @@ from langchain_community.vectorstores.faiss import FAISS
|
|
13 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
from langchain_community.llms import HuggingFaceEndpoint
|
15 |
|
16 |
-
# Load environment variables from .env file
|
17 |
-
load_dotenv()
|
18 |
-
|
19 |
# Initialize the embedding model
|
20 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
|
22 |
# Initialize the HuggingFace LLM
|
23 |
llm = HuggingFaceEndpoint(
|
24 |
endpoint_url="https://api-inference.huggingface.co/models/gpt-3.5-turbo",
|
25 |
-
model_kwargs={"api_key":
|
26 |
)
|
27 |
|
28 |
# Initialize the HuggingFace embeddings
|
@@ -32,14 +28,6 @@ embedding = HuggingFaceEmbeddings()
|
|
32 |
st.set_page_config(layout="centered")
|
33 |
st.markdown("<h1 style='font-size:24px;'>PDF and DOCX ChatBot</h1>", unsafe_allow_html=True)
|
34 |
|
35 |
-
# Retrieve API key from environment variable
|
36 |
-
google_api_key = os.getenv("GOOGLE_API_KEY")
|
37 |
-
|
38 |
-
# Check if the API key is available
|
39 |
-
if google_api_key is None:
|
40 |
-
st.warning("API key not found. Please set the google_api_key environment variable.")
|
41 |
-
st.stop()
|
42 |
-
|
43 |
# File Upload
|
44 |
uploaded_file = st.file_uploader("Upload your PDF or DOCX file", type=["pdf", "docx"])
|
45 |
|
@@ -82,21 +70,21 @@ Question:\n{question}\n
|
|
82 |
Answer:
|
83 |
"""
|
84 |
|
85 |
-
def extract_text_from_docx(
|
86 |
text = ""
|
87 |
try:
|
88 |
-
doc = Document(
|
89 |
text = "\n".join([para.text for para in doc.paragraphs])
|
90 |
except Exception as e:
|
91 |
print(f"Error extracting text from DOCX: {e}")
|
92 |
return text
|
93 |
|
94 |
-
def extract_text_from_pdf(
|
95 |
text = ""
|
96 |
try:
|
97 |
-
pdf_document = fitz.open(
|
98 |
-
for page_num in range(pdf_document
|
99 |
-
page = pdf_document
|
100 |
text += page.get_text()
|
101 |
except Exception as e:
|
102 |
print(f"Error extracting text from PDF: {e}")
|
@@ -109,18 +97,13 @@ if uploaded_file is not None:
|
|
109 |
|
110 |
# Process the uploaded file
|
111 |
if uploaded_file.name.endswith('.pdf'):
|
112 |
-
|
113 |
-
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data))
|
114 |
-
pdf_pages = pdf_reader.pages
|
115 |
-
context = "\n\n".join(page.extract_text() for page in pdf_pages)
|
116 |
elif uploaded_file.name.endswith('.docx'):
|
117 |
-
|
118 |
-
context = extract_text_from_docx(io.BytesIO(docx_data))
|
119 |
|
120 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
|
121 |
texts = text_splitter.split_text(context)
|
122 |
-
|
123 |
-
vector_index = FAISS.from_texts(texts, embeddings).as_retriever()
|
124 |
|
125 |
user_question = st.text_input("Ask Anything from the Document:", "")
|
126 |
|
|
|
3 |
import fitz # PyMuPDF
|
4 |
import PyPDF2
|
5 |
from docx import Document
|
|
|
6 |
import streamlit as st
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
from langchain.prompts import PromptTemplate
|
|
|
12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
from langchain_community.llms import HuggingFaceEndpoint
|
14 |
|
|
|
|
|
|
|
15 |
# Initialize the embedding model
|
16 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
17 |
|
18 |
# Initialize the HuggingFace LLM
|
19 |
llm = HuggingFaceEndpoint(
|
20 |
endpoint_url="https://api-inference.huggingface.co/models/gpt-3.5-turbo",
|
21 |
+
model_kwargs={"api_key": "YOUR_HUGGINGFACE_API_KEY"}
|
22 |
)
|
23 |
|
24 |
# Initialize the HuggingFace embeddings
|
|
|
28 |
st.set_page_config(layout="centered")
|
29 |
st.markdown("<h1 style='font-size:24px;'>PDF and DOCX ChatBot</h1>", unsafe_allow_html=True)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# File Upload
|
32 |
uploaded_file = st.file_uploader("Upload your PDF or DOCX file", type=["pdf", "docx"])
|
33 |
|
|
|
70 |
Answer:
|
71 |
"""
|
72 |
|
73 |
+
def extract_text_from_docx(docx_file):
|
74 |
text = ""
|
75 |
try:
|
76 |
+
doc = Document(docx_file)
|
77 |
text = "\n".join([para.text for para in doc.paragraphs])
|
78 |
except Exception as e:
|
79 |
print(f"Error extracting text from DOCX: {e}")
|
80 |
return text
|
81 |
|
82 |
+
def extract_text_from_pdf(pdf_file):
|
83 |
text = ""
|
84 |
try:
|
85 |
+
pdf_document = fitz.open(stream=pdf_file, filetype="pdf")
|
86 |
+
for page_num in range(len(pdf_document)):
|
87 |
+
page = pdf_document[page_num]
|
88 |
text += page.get_text()
|
89 |
except Exception as e:
|
90 |
print(f"Error extracting text from PDF: {e}")
|
|
|
97 |
|
98 |
# Process the uploaded file
|
99 |
if uploaded_file.name.endswith('.pdf'):
|
100 |
+
context = extract_text_from_pdf(uploaded_file)
|
|
|
|
|
|
|
101 |
elif uploaded_file.name.endswith('.docx'):
|
102 |
+
context = extract_text_from_docx(uploaded_file)
|
|
|
103 |
|
104 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
|
105 |
texts = text_splitter.split_text(context)
|
106 |
+
vector_index = FAISS.from_texts(texts, embedding).as_retriever()
|
|
|
107 |
|
108 |
user_question = st.text_input("Ask Anything from the Document:", "")
|
109 |
|