Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -59,12 +59,12 @@ llm = HuggingFaceEndpoint(
|
|
59 |
# Initialize the HuggingFace embeddings
|
60 |
embedding = HuggingFaceEmbeddings()
|
61 |
|
62 |
-
#
|
63 |
index_path = "faiss_index.pkl"
|
64 |
document_texts_path = "document_texts.pkl"
|
65 |
-
|
66 |
document_texts = []
|
67 |
|
|
|
68 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
69 |
try:
|
70 |
with open(index_path, "rb") as f:
|
@@ -76,8 +76,7 @@ if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
|
76 |
except Exception as e:
|
77 |
print(f"Error loading FAISS index or document texts: {e}")
|
78 |
else:
|
79 |
-
|
80 |
-
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
|
81 |
with open(index_path, "wb") as f:
|
82 |
pickle.dump(index, f)
|
83 |
print("Created new FAISS index and saved to faiss_index.pkl")
|
@@ -86,7 +85,7 @@ def upload_files(files):
|
|
86 |
global index, document_texts
|
87 |
try:
|
88 |
for file in files:
|
89 |
-
file_path = file.name
|
90 |
if file_path.endswith('.pdf'):
|
91 |
text = extract_text_from_pdf(file_path)
|
92 |
elif file_path.endswith('.docx'):
|
@@ -94,23 +93,22 @@ def upload_files(files):
|
|
94 |
else:
|
95 |
return "Unsupported file format"
|
96 |
|
97 |
-
print(f"Extracted text: {text[:100]}...")
|
98 |
|
99 |
-
# Process the text and update FAISS index
|
100 |
sentences = text.split("\n")
|
101 |
-
embeddings = embedding_model.encode(sentences)
|
102 |
-
print(f"Embeddings shape: {embeddings.shape}")
|
103 |
index.add(np.array(embeddings))
|
104 |
-
document_texts.extend(sentences)
|
105 |
|
106 |
-
# Save
|
107 |
with open(index_path, "wb") as f:
|
108 |
pickle.dump(index, f)
|
109 |
print("Saved updated FAISS index to faiss_index.pkl")
|
110 |
with open(document_texts_path, "wb") as f:
|
111 |
pickle.dump(document_texts, f)
|
112 |
print("Saved updated document texts to document_texts.pkl")
|
113 |
-
|
114 |
return "Files processed successfully"
|
115 |
except Exception as e:
|
116 |
print(f"Error processing files: {e}")
|
@@ -118,30 +116,28 @@ def upload_files(files):
|
|
118 |
|
119 |
def query_text(text):
|
120 |
try:
|
121 |
-
print(f"Query text: {text}")
|
|
|
|
|
122 |
|
123 |
-
# Encode the query text
|
124 |
-
query_embedding = embedding_model.encode([text])
|
125 |
-
print(f"Query embedding shape: {query_embedding.shape}") # Debug: Show the shape of the query embedding
|
126 |
-
|
127 |
-
# Search the FAISS index
|
128 |
D, I = index.search(np.array(query_embedding), k=5)
|
129 |
-
print(f"Distances: {D}, Indices: {I}")
|
130 |
-
|
131 |
top_documents = []
|
132 |
for idx in I[0]:
|
133 |
-
if idx != -1 and idx < len(document_texts):
|
134 |
-
top_documents.append(document_texts[idx])
|
135 |
else:
|
136 |
print(f"Invalid index found: {idx}")
|
137 |
-
|
|
|
138 |
except Exception as e:
|
139 |
print(f"Error querying text: {e}")
|
140 |
return f"Error querying text: {e}"
|
141 |
|
142 |
-
#
|
143 |
with gr.Blocks() as demo:
|
144 |
-
gr.Markdown("## Document Upload and Query System")
|
145 |
|
146 |
with gr.Tab("Upload Files"):
|
147 |
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
|
|
|
59 |
# Initialize the HuggingFace embeddings
|
60 |
embedding = HuggingFaceEmbeddings()
|
61 |
|
62 |
+
# FAISS index and storage paths
|
63 |
index_path = "faiss_index.pkl"
|
64 |
document_texts_path = "document_texts.pkl"
|
|
|
65 |
document_texts = []
|
66 |
|
67 |
+
# Load or create FAISS index using cosine similarity (Inner Product + Normalized vectors)
|
68 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
69 |
try:
|
70 |
with open(index_path, "rb") as f:
|
|
|
76 |
except Exception as e:
|
77 |
print(f"Error loading FAISS index or document texts: {e}")
|
78 |
else:
|
79 |
+
index = faiss.IndexFlatIP(embedding_model.get_sentence_embedding_dimension())
|
|
|
80 |
with open(index_path, "wb") as f:
|
81 |
pickle.dump(index, f)
|
82 |
print("Created new FAISS index and saved to faiss_index.pkl")
|
|
|
85 |
global index, document_texts
|
86 |
try:
|
87 |
for file in files:
|
88 |
+
file_path = file.name
|
89 |
if file_path.endswith('.pdf'):
|
90 |
text = extract_text_from_pdf(file_path)
|
91 |
elif file_path.endswith('.docx'):
|
|
|
93 |
else:
|
94 |
return "Unsupported file format"
|
95 |
|
96 |
+
print(f"Extracted text: {text[:100]}...")
|
97 |
|
|
|
98 |
sentences = text.split("\n")
|
99 |
+
embeddings = embedding_model.encode(sentences, normalize_embeddings=True) # Cosine similarity step
|
100 |
+
print(f"Embeddings shape: {embeddings.shape}")
|
101 |
index.add(np.array(embeddings))
|
102 |
+
document_texts.extend(sentences)
|
103 |
|
104 |
+
# Save updated index and texts
|
105 |
with open(index_path, "wb") as f:
|
106 |
pickle.dump(index, f)
|
107 |
print("Saved updated FAISS index to faiss_index.pkl")
|
108 |
with open(document_texts_path, "wb") as f:
|
109 |
pickle.dump(document_texts, f)
|
110 |
print("Saved updated document texts to document_texts.pkl")
|
111 |
+
|
112 |
return "Files processed successfully"
|
113 |
except Exception as e:
|
114 |
print(f"Error processing files: {e}")
|
|
|
116 |
|
117 |
def query_text(text):
|
118 |
try:
|
119 |
+
print(f"Query text: {text}")
|
120 |
+
query_embedding = embedding_model.encode([text], normalize_embeddings=True) # Cosine similarity step
|
121 |
+
print(f"Query embedding shape: {query_embedding.shape}")
|
122 |
|
|
|
|
|
|
|
|
|
|
|
123 |
D, I = index.search(np.array(query_embedding), k=5)
|
124 |
+
print(f"Distances: {D}, Indices: {I}")
|
125 |
+
|
126 |
top_documents = []
|
127 |
for idx in I[0]:
|
128 |
+
if idx != -1 and idx < len(document_texts):
|
129 |
+
top_documents.append(document_texts[idx])
|
130 |
else:
|
131 |
print(f"Invalid index found: {idx}")
|
132 |
+
|
133 |
+
return "\n\n".join(top_documents)
|
134 |
except Exception as e:
|
135 |
print(f"Error querying text: {e}")
|
136 |
return f"Error querying text: {e}"
|
137 |
|
138 |
+
# Gradio Interface
|
139 |
with gr.Blocks() as demo:
|
140 |
+
gr.Markdown("## Document Upload and Query System with Cosine Similarity")
|
141 |
|
142 |
with gr.Tab("Upload Files"):
|
143 |
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
|