Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -2,168 +2,124 @@ import os
|
|
2 |
import fitz
|
3 |
from docx import Document
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
-
import
|
6 |
-
import numpy as np
|
7 |
-
import pickle
|
8 |
-
import gradio as gr
|
9 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
10 |
from langchain_community.vectorstores import FAISS
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
12 |
|
13 |
-
# Function to extract text from a PDF file
|
14 |
def extract_text_from_pdf(pdf_path):
|
15 |
-
|
16 |
-
try:
|
17 |
-
doc = fitz.open(pdf_path)
|
18 |
-
for page_num in range(len(doc)):
|
19 |
-
page = doc.load_page(page_num)
|
20 |
-
text += page.get_text()
|
21 |
-
except Exception as e:
|
22 |
-
print(f"Error extracting text from PDF: {e}")
|
23 |
-
return text
|
24 |
|
25 |
-
# Function to extract text from a Word document
|
26 |
def extract_text_from_docx(docx_path):
|
27 |
-
|
28 |
-
try:
|
29 |
-
doc = Document(docx_path)
|
30 |
-
text = "\n".join([para.text for para in doc.paragraphs])
|
31 |
-
except Exception as e:
|
32 |
-
print(f"Error extracting text from DOCX: {e}")
|
33 |
-
return text
|
34 |
|
35 |
-
# Initialize the embedding model
|
36 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
37 |
|
38 |
-
# Hugging Face API token
|
39 |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
40 |
if not api_token:
|
41 |
-
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set
|
42 |
-
|
43 |
-
# Initialize the HuggingFace LLM
|
44 |
-
llm = HuggingFaceEndpoint(
|
45 |
-
endpoint_url="https://api-inference.huggingface.co/models/gpt2", # Using gpt2 model
|
46 |
-
model_kwargs={"api_key": api_token}
|
47 |
-
)
|
48 |
|
49 |
-
#
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
# Load or create FAISS index
|
53 |
index_path = "faiss_index.pkl"
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
59 |
-
try:
|
60 |
-
with open(index_path, "rb") as f:
|
61 |
-
index = pickle.load(f)
|
62 |
-
print("Loaded FAISS index from faiss_index.pkl")
|
63 |
-
with open(document_texts_path, "rb") as f:
|
64 |
-
document_texts = pickle.load(f)
|
65 |
-
print("Loaded document texts from document_texts.pkl")
|
66 |
-
except Exception as e:
|
67 |
-
print(f"Error loading FAISS index or document texts: {e}")
|
68 |
else:
|
69 |
# Create a new FAISS index if it doesn't exist
|
70 |
-
index =
|
71 |
with open(index_path, "wb") as f:
|
72 |
-
|
73 |
print("Created new FAISS index and saved to faiss_index.pkl")
|
74 |
|
75 |
def preprocess_text(text):
|
76 |
-
|
77 |
-
return
|
78 |
|
79 |
-
def upload_files(files):
|
80 |
-
global index
|
81 |
try:
|
82 |
-
for
|
83 |
-
file_path = file.name # Get the file path from the NamedString object
|
84 |
if file_path.endswith('.pdf'):
|
85 |
text = extract_text_from_pdf(file_path)
|
86 |
elif file_path.endswith('.docx'):
|
87 |
text = extract_text_from_docx(file_path)
|
88 |
else:
|
89 |
-
return "Unsupported file format"
|
90 |
|
91 |
-
|
|
|
92 |
|
93 |
-
#
|
94 |
-
sentences = text.split("\n")
|
95 |
-
sentences = [preprocess_text(sentence) for sentence in sentences if sentence.strip()]
|
96 |
embeddings = embedding_model.encode(sentences)
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
# Save the updated index and documents
|
102 |
-
with open(index_path, "wb") as f:
|
103 |
-
pickle.dump(index, f)
|
104 |
-
print("Saved updated FAISS index to faiss_index.pkl")
|
105 |
-
with open(document_texts_path, "wb") as f:
|
106 |
-
pickle.dump(document_texts, f)
|
107 |
-
print("Saved updated document texts to document_texts.pkl")
|
108 |
-
|
109 |
-
return "Files processed successfully"
|
110 |
except Exception as e:
|
111 |
print(f"Error processing files: {e}")
|
112 |
-
return
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
If the answer is not in the context, say "answer is not available in the context".
|
118 |
-
Do not provide false information.
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
#
|
153 |
-
|
154 |
-
|
155 |
-
#
|
156 |
-
context = "\n".join(top_documents)
|
157 |
-
|
158 |
-
# Prepare the prompt
|
159 |
-
prompt = prompt_template.format(context=context, question=text)
|
160 |
-
|
161 |
-
# Query the LLM
|
162 |
-
response = llm(prompt)
|
163 |
-
return response
|
164 |
-
except Exception as e:
|
165 |
-
print(f"Error querying text: {e}")
|
166 |
-
return f"Error querying text: {e}"
|
167 |
|
168 |
# Create Gradio interface
|
169 |
with gr.Blocks() as demo:
|
@@ -183,6 +139,3 @@ with gr.Blocks() as demo:
|
|
183 |
|
184 |
demo.launch()
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
2 |
import fitz
|
3 |
from docx import Document
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
+
from langchain_community.llms import HuggingFaceEndpoint # Might need update (optional)
|
|
|
|
|
|
|
|
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
9 |
+
from nltk.tokenize import sent_tokenize # Import for sentence segmentation
|
10 |
|
11 |
+
# Function to extract text from a PDF file (same as before)
|
12 |
def extract_text_from_pdf(pdf_path):
|
13 |
+
# ... (implementation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Function to extract text from a Word document (same as before)
|
16 |
def extract_text_from_docx(docx_path):
|
17 |
+
# ... (implementation)
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Initialize the embedding model (same as before)
|
20 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
|
22 |
+
# Hugging Face API token (same as before)
|
23 |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
24 |
if not api_token:
|
25 |
+
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Define RAG models (same as before)
|
28 |
+
generator_model_name = "facebook/bart-base"
|
29 |
+
retriever_model_name = "facebook/bart-base" # Can be the same as generator
|
30 |
+
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
|
31 |
+
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
|
32 |
+
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
|
33 |
+
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
|
34 |
|
35 |
+
# Load or create FAISS index (using LangChain)
|
36 |
index_path = "faiss_index.pkl"
|
37 |
+
if os.path.exists(index_path):
|
38 |
+
with open(index_path, "rb") as f:
|
39 |
+
index = FAISS.load(f)
|
40 |
+
print("Loaded FAISS index from faiss_index.pkl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
else:
|
42 |
# Create a new FAISS index if it doesn't exist
|
43 |
+
index = FAISS(embedding_dimension=embedding_model.get_sentence_embedding_dimension())
|
44 |
with open(index_path, "wb") as f:
|
45 |
+
FAISS.save(index, f)
|
46 |
print("Created new FAISS index and saved to faiss_index.pkl")
|
47 |
|
48 |
def preprocess_text(text):
|
49 |
+
sentences = sent_tokenize(text)
|
50 |
+
return sentences
|
51 |
|
52 |
+
def upload_files(state, files):
|
53 |
+
global index
|
54 |
try:
|
55 |
+
for file_path in files:
|
|
|
56 |
if file_path.endswith('.pdf'):
|
57 |
text = extract_text_from_pdf(file_path)
|
58 |
elif file_path.endswith('.docx'):
|
59 |
text = extract_text_from_docx(file_path)
|
60 |
else:
|
61 |
+
return {"error": "Unsupported file format"}
|
62 |
|
63 |
+
# Preprocess text (call the new function)
|
64 |
+
sentences = preprocess_text(text)
|
65 |
|
66 |
+
# Encode sentences and add to FAISS index
|
|
|
|
|
67 |
embeddings = embedding_model.encode(sentences)
|
68 |
+
index.add(embeddings)
|
69 |
+
|
70 |
+
return {"message": "Files processed successfully"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
except Exception as e:
|
72 |
print(f"Error processing files: {e}")
|
73 |
+
return {"error": "Error processing files"} # Provide informative error message
|
74 |
|
75 |
+
def process_and_query(state, files, question):
|
76 |
+
# State management for conversation history (similar to previous example)
|
77 |
+
# ...
|
|
|
|
|
78 |
|
79 |
+
# Handle file upload (using upload_files function)
|
80 |
+
if files:
|
81 |
+
upload_result = upload_files(state, files)
|
82 |
+
if "error" in upload_result:
|
83 |
+
return upload_result # Return error message from upload_files if any
|
84 |
|
85 |
+
# Handle user question and generate response using RAG models if question and state.
|
86 |
+
def process_and_query(state, files, question):
|
87 |
+
# State management for conversation history (similar to previous example)
|
88 |
+
# ...
|
89 |
|
90 |
+
# Handle file upload (using upload_files function)
|
91 |
+
if files:
|
92 |
+
upload_result = upload_files(state, files)
|
93 |
+
if "error" in upload_result:
|
94 |
+
return upload_result # Return error message from upload_files if any
|
95 |
|
96 |
+
# Handle user question and generate response using RAG models
|
97 |
+
if question and state["processed_text"]:
|
98 |
+
# Preprocess the question
|
99 |
+
question_embedding = embedding_model.encode([question])
|
100 |
+
|
101 |
+
# Use retriever model to retrieve relevant passages
|
102 |
+
with torch.no_grad(): # Disable gradient calculation for efficiency
|
103 |
+
retriever_outputs = retriever(**retriever_tokenizer(question, return_tensors="pt"))
|
104 |
+
retriever_hidden_states = retriever_outputs.hidden_states[-1] # Last hidden state
|
105 |
+
|
106 |
+
# Search the FAISS index for similar passages based on retrieved hidden states
|
107 |
+
distances, retrieved_ids = index.search(retriever_hidden_states.cpu().numpy(), k=5) # Retrieve top 5 passages
|
108 |
+
|
109 |
+
# Get the retrieved passages from the document text
|
110 |
+
retrieved_passages = [state["processed_text"].split("\n")[i] for i in retrieved_ids.flatten()]
|
111 |
+
|
112 |
+
# Use generator model to generate response based on question and retrieved passages
|
113 |
+
# Combine question embedding with retrieved passages (consider weighting or attention mechanism)
|
114 |
+
combined_input = torch.cat([question_embedding, embedding_model.encode(retrieved_passages)], dim=0)
|
115 |
+
with torch.no_grad():
|
116 |
+
generator_outputs = generator(**generator_tokenizer(combined_input, return_tensors="pt"))
|
117 |
+
generated_text = generator_tokenizer.decode(generator_outputs.sequences.squeeze())
|
118 |
+
|
119 |
+
# Update conversation history
|
120 |
+
state["conversation"].append({"question": question, "answer": generated_text})
|
121 |
+
|
122 |
+
return state # Return the updated state with conversation history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Create Gradio interface
|
125 |
with gr.Blocks() as demo:
|
|
|
139 |
|
140 |
demo.launch()
|
141 |
|
|
|
|
|
|