NaimaAqeel commited on
Commit
c1cc067
·
verified ·
1 Parent(s): d1c01a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -41,9 +41,8 @@ retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
41
  retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
42
 
43
  # Initialize FAISS index using LangChain
44
- embedding_dimension = embedding_model.get_sentence_embedding_dimension()
45
  hf_embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
46
- faiss_index = FAISS(embedding_function=hf_embeddings, dimension=embedding_dimension)
47
 
48
  # Load or create FAISS index
49
  index_path = "faiss_index.pkl"
@@ -74,7 +73,7 @@ def upload_files(files):
74
 
75
  # Encode sentences and add to FAISS index
76
  embeddings = embedding_model.encode(sentences)
77
- faiss_index.add_texts(sentences, embeddings)
78
 
79
  # Save the updated index
80
  with open(index_path, "wb") as f:
@@ -96,10 +95,8 @@ def process_and_query(state, files, question):
96
  question_embedding = embedding_model.encode([question])
97
 
98
  # Search the FAISS index for similar passages
99
- distances, retrieved_ids = faiss_index.similarity_search_with_score(question_embedding, k=5) # Retrieve top 5 passages
100
-
101
- # Get the retrieved passages from the document text
102
- retrieved_passages = [state["processed_text"].split("\n")[i] for i in retrieved_ids.flatten()]
103
 
104
  # Use generator model to generate response based on question and retrieved passages
105
  combined_input = question + " ".join(retrieved_passages)
@@ -132,3 +129,5 @@ with gr.Blocks() as demo:
132
  query_button.click(fn=process_and_query, inputs=[query], outputs=query_output)
133
 
134
  demo.launch()
 
 
 
41
  retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
42
 
43
  # Initialize FAISS index using LangChain
 
44
  hf_embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
45
+ faiss_index = FAISS(embedding_function=hf_embeddings)
46
 
47
  # Load or create FAISS index
48
  index_path = "faiss_index.pkl"
 
73
 
74
  # Encode sentences and add to FAISS index
75
  embeddings = embedding_model.encode(sentences)
76
+ faiss_index.add_texts(sentences)
77
 
78
  # Save the updated index
79
  with open(index_path, "wb") as f:
 
95
  question_embedding = embedding_model.encode([question])
96
 
97
  # Search the FAISS index for similar passages
98
+ retrieved_results = faiss_index.similarity_search(question, k=5) # Retrieve top 5 passages
99
+ retrieved_passages = [result['text'] for result in retrieved_results]
 
 
100
 
101
  # Use generator model to generate response based on question and retrieved passages
102
  combined_input = question + " ".join(retrieved_passages)
 
129
  query_button.click(fn=process_and_query, inputs=[query], outputs=query_output)
130
 
131
  demo.launch()
132
+
133
+