Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import faiss
|
|
9 |
import torch
|
10 |
|
11 |
# ===============================
|
12 |
-
# EMBEDDING MODEL
|
13 |
# ===============================
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -22,16 +22,14 @@ def get_embeddings(texts):
|
|
22 |
with torch.no_grad():
|
23 |
outputs = embedding_model(**inputs)
|
24 |
embeddings = outputs.last_hidden_state[:, 0].cpu().numpy()
|
|
|
|
|
25 |
return embeddings
|
26 |
|
27 |
-
def normalize_embeddings(embeddings):
|
28 |
-
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
29 |
-
return embeddings / (norms + 1e-10)
|
30 |
-
|
31 |
# ===============================
|
32 |
# TEXT CHUNKING
|
33 |
# ===============================
|
34 |
-
def chunk_text(text, chunk_size=
|
35 |
chunks = []
|
36 |
start = 0
|
37 |
while start < len(text):
|
@@ -46,7 +44,7 @@ def chunk_text(text, chunk_size=400, overlap=100):
|
|
46 |
index_path = "faiss_index.pkl"
|
47 |
document_texts_path = "document_texts.pkl"
|
48 |
document_texts = []
|
49 |
-
embedding_dim = 384
|
50 |
|
51 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
52 |
try:
|
@@ -78,7 +76,6 @@ def extract_text_from_docx(path):
|
|
78 |
try:
|
79 |
doc = Document(path)
|
80 |
text = "\n".join([para.text for para in doc.paragraphs])
|
81 |
-
print(f"Extracted DOCX text preview: {text[:500]}") # Preview first 500 chars for debug
|
82 |
except Exception as e:
|
83 |
print(f"DOCX error: {e}")
|
84 |
return text
|
@@ -97,7 +94,6 @@ def upload_document(file):
|
|
97 |
|
98 |
chunks = chunk_text(text)
|
99 |
chunk_embeddings = get_embeddings(chunks)
|
100 |
-
chunk_embeddings = normalize_embeddings(chunk_embeddings)
|
101 |
index.add(np.array(chunk_embeddings).astype('float32'))
|
102 |
document_texts.extend(chunks)
|
103 |
|
@@ -113,30 +109,29 @@ def upload_document(file):
|
|
113 |
# ===============================
|
114 |
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
115 |
|
116 |
-
def generate_answer_from_file(query, top_k=
|
117 |
if not document_texts:
|
118 |
return "No documents indexed yet."
|
119 |
|
120 |
query_vector = get_embeddings(query).astype("float32")
|
121 |
-
query_vector = normalize_embeddings(query_vector)
|
122 |
scores, indices = index.search(query_vector, k=top_k)
|
123 |
retrieved_chunks = [document_texts[i] for i in indices[0]]
|
124 |
context = "\n\n".join(retrieved_chunks)
|
125 |
|
126 |
prompt = (
|
127 |
-
"You are a helpful assistant reading student notes or textbook passages.\n\n"
|
128 |
-
"Based on the context provided, answer the question accurately.\n\n"
|
129 |
"### Example\n"
|
130 |
"Context:\nArtificial systems are created by people. These systems are designed to perform specific tasks, improve efficiency, and solve problems. Examples include knowledge systems, engineering systems, and social systems.\n\n"
|
131 |
"Question: What is an Artificial System?\n"
|
132 |
-
"Answer: Artificial systems are systems created by humans to perform specific tasks, improve efficiency, and solve problems. They include systems
|
133 |
"### Now answer this\n"
|
134 |
f"Context:\n{context}\n\n"
|
135 |
f"Question: {query}\n"
|
136 |
-
|
137 |
)
|
138 |
|
139 |
-
result = qa_pipeline(prompt, max_length=
|
140 |
return result.strip()
|
141 |
|
142 |
# ===============================
|
@@ -160,3 +155,4 @@ search_interface = gr.Interface(
|
|
160 |
|
161 |
app = gr.TabbedInterface([upload_interface, search_interface], ["Upload", "Ask"])
|
162 |
app.launch()
|
|
|
|
9 |
import torch
|
10 |
|
11 |
# ===============================
|
12 |
+
# EMBEDDING MODEL SETUP
|
13 |
# ===============================
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
22 |
with torch.no_grad():
|
23 |
outputs = embedding_model(**inputs)
|
24 |
embeddings = outputs.last_hidden_state[:, 0].cpu().numpy()
|
25 |
+
# Normalize embeddings to unit length for cosine similarity
|
26 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
27 |
return embeddings
|
28 |
|
|
|
|
|
|
|
|
|
29 |
# ===============================
|
30 |
# TEXT CHUNKING
|
31 |
# ===============================
|
32 |
+
def chunk_text(text, chunk_size=500, overlap=50):
|
33 |
chunks = []
|
34 |
start = 0
|
35 |
while start < len(text):
|
|
|
44 |
index_path = "faiss_index.pkl"
|
45 |
document_texts_path = "document_texts.pkl"
|
46 |
document_texts = []
|
47 |
+
embedding_dim = 384 # For all-MiniLM-L6-v2
|
48 |
|
49 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
50 |
try:
|
|
|
76 |
try:
|
77 |
doc = Document(path)
|
78 |
text = "\n".join([para.text for para in doc.paragraphs])
|
|
|
79 |
except Exception as e:
|
80 |
print(f"DOCX error: {e}")
|
81 |
return text
|
|
|
94 |
|
95 |
chunks = chunk_text(text)
|
96 |
chunk_embeddings = get_embeddings(chunks)
|
|
|
97 |
index.add(np.array(chunk_embeddings).astype('float32'))
|
98 |
document_texts.extend(chunks)
|
99 |
|
|
|
109 |
# ===============================
|
110 |
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
111 |
|
112 |
+
def generate_answer_from_file(query, top_k=7):
|
113 |
if not document_texts:
|
114 |
return "No documents indexed yet."
|
115 |
|
116 |
query_vector = get_embeddings(query).astype("float32")
|
|
|
117 |
scores, indices = index.search(query_vector, k=top_k)
|
118 |
retrieved_chunks = [document_texts[i] for i in indices[0]]
|
119 |
context = "\n\n".join(retrieved_chunks)
|
120 |
|
121 |
prompt = (
|
122 |
+
"You are a helpful and precise assistant reading student notes or textbook passages.\n\n"
|
123 |
+
"Based on the context provided, answer the question accurately and in detail using full sentences.\n\n"
|
124 |
"### Example\n"
|
125 |
"Context:\nArtificial systems are created by people. These systems are designed to perform specific tasks, improve efficiency, and solve problems. Examples include knowledge systems, engineering systems, and social systems.\n\n"
|
126 |
"Question: What is an Artificial System?\n"
|
127 |
+
"Answer: Artificial systems are systems created by humans to perform specific tasks, improve efficiency, and solve problems. They include systems such as knowledge systems, engineering systems, and social systems.\n\n"
|
128 |
"### Now answer this\n"
|
129 |
f"Context:\n{context}\n\n"
|
130 |
f"Question: {query}\n"
|
131 |
+
"Answer:\nPlease answer ONLY based on the context above without adding extra information."
|
132 |
)
|
133 |
|
134 |
+
result = qa_pipeline(prompt, max_length=700, do_sample=False)[0]['generated_text']
|
135 |
return result.strip()
|
136 |
|
137 |
# ===============================
|
|
|
155 |
|
156 |
app = gr.TabbedInterface([upload_interface, search_interface], ["Upload", "Ask"])
|
157 |
app.launch()
|
158 |
+
|