NaimaAqeel commited on
Commit
eda6735
·
verified ·
1 Parent(s): e9493f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -118
app.py CHANGED
@@ -1,27 +1,87 @@
1
  import os
 
2
  import fitz # PyMuPDF
 
3
  from docx import Document
 
 
4
  from sentence_transformers import SentenceTransformer
5
- import faiss
6
- import numpy as np
7
- import pickle
8
- from langchain_community.llms import HuggingFaceEndpoint
9
  from langchain_community.embeddings import HuggingFaceEmbeddings
10
- import gradio as gr
 
 
 
11
 
12
  # Initialize the embedding model
13
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
14
 
15
  # Initialize the HuggingFace LLM
16
  llm = HuggingFaceEndpoint(
17
- endpoint_url="https://api-inference.huggingface.co/models/gpt-3.5-turbo", # Use a known model
18
  model_kwargs={"api_key": os.getenv('HUGGINGFACEHUB_API_TOKEN')}
19
  )
20
 
21
  # Initialize the HuggingFace embeddings
22
  embedding = HuggingFaceEmbeddings()
23
 
24
- # Function to extract text from a Word document
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  def extract_text_from_docx(docx_path):
26
  text = ""
27
  try:
@@ -31,7 +91,6 @@ def extract_text_from_docx(docx_path):
31
  print(f"Error extracting text from DOCX: {e}")
32
  return text
33
 
34
- # Function to extract text from a PDF document
35
  def extract_text_from_pdf(pdf_path):
36
  text = ""
37
  try:
@@ -43,113 +102,38 @@ def extract_text_from_pdf(pdf_path):
43
  print(f"Error extracting text from PDF: {e}")
44
  return text
45
 
46
- # Load or create FAISS index
47
- index_path = "faiss_index.pkl"
48
- document_texts_path = "document_texts.pkl"
49
-
50
- document_texts = []
51
-
52
- if os.path.exists(index_path) and os.path.exists(document_texts_path):
53
- try:
54
- with open(index_path, "rb") as f:
55
- index = pickle.load(f)
56
- print("Loaded FAISS index from faiss_index.pkl")
57
- with open(document_texts_path, "rb") as f:
58
- document_texts = pickle.load(f)
59
- print("Loaded document texts from document_texts.pkl")
60
- except Exception as e:
61
- print(f"Error loading FAISS index or document texts: {e}")
62
- else:
63
- # Create a new FAISS index if it doesn't exist
64
- index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
65
- with open(index_path, "wb") as f:
66
- pickle.dump(index, f)
67
- print("Created new FAISS index and saved to faiss_index.pkl")
68
-
69
- def preprocess_text(text):
70
- # Add more preprocessing steps if necessary
71
- return text.strip()
72
-
73
- def upload_files(files):
74
- global index, document_texts
75
- try:
76
- for file in files:
77
- file_path = file.name # Get the file path from the NamedString object
78
- if file_path.endswith('.docx'):
79
- text = extract_text_from_docx(file_path)
80
- elif file_path.endswith('.pdf'):
81
- text = extract_text_from_pdf(file_path)
82
- else:
83
- continue
84
-
85
- # Process the text and update FAISS index
86
- sentences = text.split("\n")
87
- sentences = [preprocess_text(sentence) for sentence in sentences if sentence.strip()]
88
- embeddings = embedding_model.encode(sentences)
89
- index.add(np.array(embeddings))
90
- document_texts.extend(sentences) # Store sentences for retrieval
91
-
92
- # Save the updated index and documents
93
- with open(index_path, "wb") as f:
94
- pickle.dump(index, f)
95
- print("Saved updated FAISS index to faiss_index.pkl")
96
- with open(document_texts_path, "wb") as f:
97
- pickle.dump(document_texts, f)
98
- print("Saved updated document texts to document_texts.pkl")
99
-
100
- return "Files processed successfully"
101
- except Exception as e:
102
- print(f"Error processing files: {e}")
103
- return f"Error processing files: {e}"
104
-
105
- def query_text(text):
106
- try:
107
- # Encode the query text
108
- query_embedding = embedding_model.encode([text])
109
-
110
- # Search the FAISS index
111
- D, I = index.search(np.array(query_embedding), k=5)
112
-
113
- top_documents = []
114
- for idx in I[0]:
115
- if idx != -1 and idx < len(document_texts): # Ensure that a valid index is found
116
- top_documents.append(document_texts[idx]) # Append the actual sentences for the response
117
-
118
- # Prepare the prompt
119
- context = "\n".join(top_documents)
120
- prompt = f"Context:\n{context}\n\nQuestion:\n{text}\n\nAnswer:\n"
121
-
122
- # Query the LLM
123
- response = llm(prompt)
124
- print(f"Prompt: {prompt}")
125
- print(f"Response: {response}")
126
- return response
127
- except Exception as e:
128
- print(f"Error querying text: {e}")
129
- return f"Error querying text: {e}"
130
-
131
- def main():
132
- # Gradio interface for uploading files
133
- file_upload_interface = gr.Interface(
134
- fn=upload_files,
135
- inputs=gr.File(file_count="multiple", label="Upload DOCX or PDF files"),
136
- outputs="text",
137
- title="Upload Files",
138
- description="Upload DOCX or PDF files to process and add to the FAISS index."
139
- )
140
-
141
- # Gradio interface for querying text
142
- query_interface = gr.Interface(
143
- fn=query_text,
144
- inputs="text",
145
- outputs="text",
146
- title="Query Text",
147
- description="Query the indexed text and get answers from the language model."
148
- )
149
-
150
- # Create a tabbed interface
151
- demo = gr.TabbedInterface([file_upload_interface, query_interface], ["Upload Files", "Query Text"])
152
- demo.launch()
153
-
154
- if __name__ == "__main__":
155
- main()
 
1
  import os
2
+ import io
3
  import fitz # PyMuPDF
4
+ import PyPDF2
5
  from docx import Document
6
+ from dotenv import load_dotenv
7
+ import streamlit as st
8
  from sentence_transformers import SentenceTransformer
9
+ from langchain.prompts import PromptTemplate
10
+ from langchain.chains.question_answering import load_qa_chain
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+ from langchain_community.vectorstores.faiss import FAISS
13
  from langchain_community.embeddings import HuggingFaceEmbeddings
14
+ from langchain_community.llms import HuggingFaceEndpoint
15
+
16
+ # Load environment variables from .env file
17
+ load_dotenv()
18
 
19
  # Initialize the embedding model
20
  embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
21
 
22
  # Initialize the HuggingFace LLM
23
  llm = HuggingFaceEndpoint(
24
+ endpoint_url="https://api-inference.huggingface.co/models/gpt-3.5-turbo",
25
  model_kwargs={"api_key": os.getenv('HUGGINGFACEHUB_API_TOKEN')}
26
  )
27
 
28
  # Initialize the HuggingFace embeddings
29
  embedding = HuggingFaceEmbeddings()
30
 
31
+ # Streamlit setup
32
+ st.set_page_config(layout="centered")
33
+ st.markdown("<h1 style='font-size:24px;'>PDF and DOCX ChatBot</h1>", unsafe_allow_html=True)
34
+
35
+ # Retrieve API key from environment variable
36
+ google_api_key = os.getenv("GOOGLE_API_KEY")
37
+
38
+ # Check if the API key is available
39
+ if google_api_key is None:
40
+ st.warning("API key not found. Please set the google_api_key environment variable.")
41
+ st.stop()
42
+
43
+ # File Upload
44
+ uploaded_file = st.file_uploader("Upload your PDF or DOCX file", type=["pdf", "docx"])
45
+
46
+ prompt_template = """
47
+ Answer the question as detailed as possible from the provided context,
48
+ make sure to provide all the details, if the answer is not in
49
+ provided context just say, "answer is not available in the context",
50
+ don't provide the wrong answer\n\n
51
+ Context:\n {context}?\n
52
+ Question: \n{question}\n
53
+ Answer:
54
+ """
55
+
56
+ prompt_template += """
57
+ --------------------------------------------------
58
+ Prompt Suggestions:
59
+ 1. Summarize the primary theme of the context.
60
+ 2. Elaborate on the crucial concepts highlighted in the context.
61
+ 3. Pinpoint any supporting details or examples pertinent to the question.
62
+ 4. Examine any recurring themes or patterns relevant to the question within the context.
63
+ 5. Contrast differing viewpoints or elements mentioned in the context.
64
+ 6. Explore the potential implications or outcomes of the information provided.
65
+ 7. Assess the trustworthiness and validity of the information given.
66
+ 8. Propose recommendations or advice based on the presented information.
67
+ 9. Forecast likely future events or results stemming from the context.
68
+ 10. Expand on the context or background information pertinent to the question.
69
+ 11. Define any specialized terms or technical language used within the context.
70
+ 12. Analyze any visual representations like charts or graphs in the context.
71
+ 13. Highlight any restrictions or important considerations when responding to the question.
72
+ 14. Examine any presuppositions or biases evident within the context.
73
+ 15. Present alternate interpretations or viewpoints regarding the information provided.
74
+ 16. Reflect on any moral or ethical issues raised by the context.
75
+ 17. Investigate any cause-and-effect relationships identified in the context.
76
+ 18. Uncover any questions or areas requiring further exploration.
77
+ 19. Resolve any vague or conflicting information in the context.
78
+ 20. Cite case studies or examples that demonstrate the concepts discussed in the context.
79
+ --------------------------------------------------
80
+ Context:\n{context}\n
81
+ Question:\n{question}\n
82
+ Answer:
83
+ """
84
+
85
  def extract_text_from_docx(docx_path):
86
  text = ""
87
  try:
 
91
  print(f"Error extracting text from DOCX: {e}")
92
  return text
93
 
 
94
  def extract_text_from_pdf(pdf_path):
95
  text = ""
96
  try:
 
102
  print(f"Error extracting text from PDF: {e}")
103
  return text
104
 
105
+ if uploaded_file is not None:
106
+ st.text("File Uploaded Successfully!")
107
+
108
+ context = ""
109
+
110
+ # Process the uploaded file
111
+ if uploaded_file.name.endswith('.pdf'):
112
+ pdf_data = uploaded_file.read()
113
+ pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data))
114
+ pdf_pages = pdf_reader.pages
115
+ context = "\n\n".join(page.extract_text() for page in pdf_pages)
116
+ elif uploaded_file.name.endswith('.docx'):
117
+ docx_data = uploaded_file.read()
118
+ context = extract_text_from_docx(io.BytesIO(docx_data))
119
+
120
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
121
+ texts = text_splitter.split_text(context)
122
+ embeddings = HuggingFaceEmbeddings()
123
+ vector_index = FAISS.from_texts(texts, embeddings).as_retriever()
124
+
125
+ user_question = st.text_input("Ask Anything from the Document:", "")
126
+
127
+ if st.button("Get Answer"):
128
+ if user_question:
129
+ with st.spinner("Processing..."):
130
+ docs = vector_index.get_relevant_documents(user_question)
131
+ prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
132
+ chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
133
+ response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
134
+ st.subheader("Answer:")
135
+ st.write(response['output_text'])
136
+ else:
137
+ st.warning("Please enter a question.")
138
+
139
+