Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,87 @@
|
|
1 |
import os
|
|
|
2 |
import fitz # PyMuPDF
|
|
|
3 |
from docx import Document
|
|
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
-
import
|
6 |
-
|
7 |
-
import
|
8 |
-
from langchain_community.
|
9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
# Initialize the embedding model
|
13 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
14 |
|
15 |
# Initialize the HuggingFace LLM
|
16 |
llm = HuggingFaceEndpoint(
|
17 |
-
endpoint_url="https://api-inference.huggingface.co/models/gpt-3.5-turbo",
|
18 |
model_kwargs={"api_key": os.getenv('HUGGINGFACEHUB_API_TOKEN')}
|
19 |
)
|
20 |
|
21 |
# Initialize the HuggingFace embeddings
|
22 |
embedding = HuggingFaceEmbeddings()
|
23 |
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def extract_text_from_docx(docx_path):
|
26 |
text = ""
|
27 |
try:
|
@@ -31,7 +91,6 @@ def extract_text_from_docx(docx_path):
|
|
31 |
print(f"Error extracting text from DOCX: {e}")
|
32 |
return text
|
33 |
|
34 |
-
# Function to extract text from a PDF document
|
35 |
def extract_text_from_pdf(pdf_path):
|
36 |
text = ""
|
37 |
try:
|
@@ -43,113 +102,38 @@ def extract_text_from_pdf(pdf_path):
|
|
43 |
print(f"Error extracting text from PDF: {e}")
|
44 |
return text
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
text = extract_text_from_pdf(file_path)
|
82 |
-
else:
|
83 |
-
continue
|
84 |
-
|
85 |
-
# Process the text and update FAISS index
|
86 |
-
sentences = text.split("\n")
|
87 |
-
sentences = [preprocess_text(sentence) for sentence in sentences if sentence.strip()]
|
88 |
-
embeddings = embedding_model.encode(sentences)
|
89 |
-
index.add(np.array(embeddings))
|
90 |
-
document_texts.extend(sentences) # Store sentences for retrieval
|
91 |
-
|
92 |
-
# Save the updated index and documents
|
93 |
-
with open(index_path, "wb") as f:
|
94 |
-
pickle.dump(index, f)
|
95 |
-
print("Saved updated FAISS index to faiss_index.pkl")
|
96 |
-
with open(document_texts_path, "wb") as f:
|
97 |
-
pickle.dump(document_texts, f)
|
98 |
-
print("Saved updated document texts to document_texts.pkl")
|
99 |
-
|
100 |
-
return "Files processed successfully"
|
101 |
-
except Exception as e:
|
102 |
-
print(f"Error processing files: {e}")
|
103 |
-
return f"Error processing files: {e}"
|
104 |
-
|
105 |
-
def query_text(text):
|
106 |
-
try:
|
107 |
-
# Encode the query text
|
108 |
-
query_embedding = embedding_model.encode([text])
|
109 |
-
|
110 |
-
# Search the FAISS index
|
111 |
-
D, I = index.search(np.array(query_embedding), k=5)
|
112 |
-
|
113 |
-
top_documents = []
|
114 |
-
for idx in I[0]:
|
115 |
-
if idx != -1 and idx < len(document_texts): # Ensure that a valid index is found
|
116 |
-
top_documents.append(document_texts[idx]) # Append the actual sentences for the response
|
117 |
-
|
118 |
-
# Prepare the prompt
|
119 |
-
context = "\n".join(top_documents)
|
120 |
-
prompt = f"Context:\n{context}\n\nQuestion:\n{text}\n\nAnswer:\n"
|
121 |
-
|
122 |
-
# Query the LLM
|
123 |
-
response = llm(prompt)
|
124 |
-
print(f"Prompt: {prompt}")
|
125 |
-
print(f"Response: {response}")
|
126 |
-
return response
|
127 |
-
except Exception as e:
|
128 |
-
print(f"Error querying text: {e}")
|
129 |
-
return f"Error querying text: {e}"
|
130 |
-
|
131 |
-
def main():
|
132 |
-
# Gradio interface for uploading files
|
133 |
-
file_upload_interface = gr.Interface(
|
134 |
-
fn=upload_files,
|
135 |
-
inputs=gr.File(file_count="multiple", label="Upload DOCX or PDF files"),
|
136 |
-
outputs="text",
|
137 |
-
title="Upload Files",
|
138 |
-
description="Upload DOCX or PDF files to process and add to the FAISS index."
|
139 |
-
)
|
140 |
-
|
141 |
-
# Gradio interface for querying text
|
142 |
-
query_interface = gr.Interface(
|
143 |
-
fn=query_text,
|
144 |
-
inputs="text",
|
145 |
-
outputs="text",
|
146 |
-
title="Query Text",
|
147 |
-
description="Query the indexed text and get answers from the language model."
|
148 |
-
)
|
149 |
-
|
150 |
-
# Create a tabbed interface
|
151 |
-
demo = gr.TabbedInterface([file_upload_interface, query_interface], ["Upload Files", "Query Text"])
|
152 |
-
demo.launch()
|
153 |
-
|
154 |
-
if __name__ == "__main__":
|
155 |
-
main()
|
|
|
1 |
import os
|
2 |
+
import io
|
3 |
import fitz # PyMuPDF
|
4 |
+
import PyPDF2
|
5 |
from docx import Document
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import streamlit as st
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain_community.vectorstores.faiss import FAISS
|
13 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
15 |
+
|
16 |
+
# Load environment variables from .env file
|
17 |
+
load_dotenv()
|
18 |
|
19 |
# Initialize the embedding model
|
20 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
|
22 |
# Initialize the HuggingFace LLM
|
23 |
llm = HuggingFaceEndpoint(
|
24 |
+
endpoint_url="https://api-inference.huggingface.co/models/gpt-3.5-turbo",
|
25 |
model_kwargs={"api_key": os.getenv('HUGGINGFACEHUB_API_TOKEN')}
|
26 |
)
|
27 |
|
28 |
# Initialize the HuggingFace embeddings
|
29 |
embedding = HuggingFaceEmbeddings()
|
30 |
|
31 |
+
# Streamlit setup
|
32 |
+
st.set_page_config(layout="centered")
|
33 |
+
st.markdown("<h1 style='font-size:24px;'>PDF and DOCX ChatBot</h1>", unsafe_allow_html=True)
|
34 |
+
|
35 |
+
# Retrieve API key from environment variable
|
36 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
37 |
+
|
38 |
+
# Check if the API key is available
|
39 |
+
if google_api_key is None:
|
40 |
+
st.warning("API key not found. Please set the google_api_key environment variable.")
|
41 |
+
st.stop()
|
42 |
+
|
43 |
+
# File Upload
|
44 |
+
uploaded_file = st.file_uploader("Upload your PDF or DOCX file", type=["pdf", "docx"])
|
45 |
+
|
46 |
+
prompt_template = """
|
47 |
+
Answer the question as detailed as possible from the provided context,
|
48 |
+
make sure to provide all the details, if the answer is not in
|
49 |
+
provided context just say, "answer is not available in the context",
|
50 |
+
don't provide the wrong answer\n\n
|
51 |
+
Context:\n {context}?\n
|
52 |
+
Question: \n{question}\n
|
53 |
+
Answer:
|
54 |
+
"""
|
55 |
+
|
56 |
+
prompt_template += """
|
57 |
+
--------------------------------------------------
|
58 |
+
Prompt Suggestions:
|
59 |
+
1. Summarize the primary theme of the context.
|
60 |
+
2. Elaborate on the crucial concepts highlighted in the context.
|
61 |
+
3. Pinpoint any supporting details or examples pertinent to the question.
|
62 |
+
4. Examine any recurring themes or patterns relevant to the question within the context.
|
63 |
+
5. Contrast differing viewpoints or elements mentioned in the context.
|
64 |
+
6. Explore the potential implications or outcomes of the information provided.
|
65 |
+
7. Assess the trustworthiness and validity of the information given.
|
66 |
+
8. Propose recommendations or advice based on the presented information.
|
67 |
+
9. Forecast likely future events or results stemming from the context.
|
68 |
+
10. Expand on the context or background information pertinent to the question.
|
69 |
+
11. Define any specialized terms or technical language used within the context.
|
70 |
+
12. Analyze any visual representations like charts or graphs in the context.
|
71 |
+
13. Highlight any restrictions or important considerations when responding to the question.
|
72 |
+
14. Examine any presuppositions or biases evident within the context.
|
73 |
+
15. Present alternate interpretations or viewpoints regarding the information provided.
|
74 |
+
16. Reflect on any moral or ethical issues raised by the context.
|
75 |
+
17. Investigate any cause-and-effect relationships identified in the context.
|
76 |
+
18. Uncover any questions or areas requiring further exploration.
|
77 |
+
19. Resolve any vague or conflicting information in the context.
|
78 |
+
20. Cite case studies or examples that demonstrate the concepts discussed in the context.
|
79 |
+
--------------------------------------------------
|
80 |
+
Context:\n{context}\n
|
81 |
+
Question:\n{question}\n
|
82 |
+
Answer:
|
83 |
+
"""
|
84 |
+
|
85 |
def extract_text_from_docx(docx_path):
|
86 |
text = ""
|
87 |
try:
|
|
|
91 |
print(f"Error extracting text from DOCX: {e}")
|
92 |
return text
|
93 |
|
|
|
94 |
def extract_text_from_pdf(pdf_path):
|
95 |
text = ""
|
96 |
try:
|
|
|
102 |
print(f"Error extracting text from PDF: {e}")
|
103 |
return text
|
104 |
|
105 |
+
if uploaded_file is not None:
|
106 |
+
st.text("File Uploaded Successfully!")
|
107 |
+
|
108 |
+
context = ""
|
109 |
+
|
110 |
+
# Process the uploaded file
|
111 |
+
if uploaded_file.name.endswith('.pdf'):
|
112 |
+
pdf_data = uploaded_file.read()
|
113 |
+
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data))
|
114 |
+
pdf_pages = pdf_reader.pages
|
115 |
+
context = "\n\n".join(page.extract_text() for page in pdf_pages)
|
116 |
+
elif uploaded_file.name.endswith('.docx'):
|
117 |
+
docx_data = uploaded_file.read()
|
118 |
+
context = extract_text_from_docx(io.BytesIO(docx_data))
|
119 |
+
|
120 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200)
|
121 |
+
texts = text_splitter.split_text(context)
|
122 |
+
embeddings = HuggingFaceEmbeddings()
|
123 |
+
vector_index = FAISS.from_texts(texts, embeddings).as_retriever()
|
124 |
+
|
125 |
+
user_question = st.text_input("Ask Anything from the Document:", "")
|
126 |
+
|
127 |
+
if st.button("Get Answer"):
|
128 |
+
if user_question:
|
129 |
+
with st.spinner("Processing..."):
|
130 |
+
docs = vector_index.get_relevant_documents(user_question)
|
131 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
|
132 |
+
chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
|
133 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
134 |
+
st.subheader("Answer:")
|
135 |
+
st.write(response['output_text'])
|
136 |
+
else:
|
137 |
+
st.warning("Please enter a question.")
|
138 |
+
|
139 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|