Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -10,135 +10,105 @@ from typing import List
|
|
10 |
from langchain_community.llms import HuggingFaceEndpoint
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
13 |
|
14 |
-
# Function to extract text from a PDF file
|
15 |
def extract_text_from_pdf(pdf_path):
|
16 |
-
|
17 |
-
try:
|
18 |
-
doc = fitz.open(pdf_path)
|
19 |
-
for page_num in range(len(doc)):
|
20 |
-
page = doc.load_page(page_num)
|
21 |
-
text += page.get_text()
|
22 |
-
except Exception as e:
|
23 |
-
print(f"Error extracting text from PDF: {e}")
|
24 |
-
return text
|
25 |
|
26 |
-
# Function to extract text from a Word document
|
27 |
def extract_text_from_docx(docx_path):
|
28 |
-
|
29 |
-
try:
|
30 |
-
doc = Document(docx_path)
|
31 |
-
text = "\n".join([para.text for para in doc.paragraphs])
|
32 |
-
except Exception as e:
|
33 |
-
print(f"Error extracting text from DOCX: {e}")
|
34 |
-
return text
|
35 |
|
36 |
-
# Initialize the embedding model
|
37 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
38 |
|
39 |
-
|
|
|
40 |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
41 |
if not api_token:
|
42 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
43 |
|
44 |
-
# Initialize the HuggingFace LLM
|
45 |
-
llm = HuggingFaceEndpoint(
|
46 |
-
endpoint_url="https://api-inference.huggingface.co/models/gpt2",
|
47 |
-
model_kwargs={"api_key": api_token}
|
48 |
-
)
|
49 |
|
50 |
-
#
|
51 |
-
|
|
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
index_path = "faiss_index.pkl"
|
55 |
document_texts_path = "document_texts.pkl"
|
56 |
-
|
57 |
document_texts = []
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
60 |
-
try:
|
61 |
-
with open(index_path, "rb") as f:
|
62 |
-
index = pickle.load(f)
|
63 |
-
print("Loaded FAISS index from faiss_index.pkl")
|
64 |
-
with open(document_texts_path, "rb") as f:
|
65 |
-
document_texts = pickle.load(f)
|
66 |
-
print("Loaded document texts from document_texts.pkl")
|
67 |
-
except Exception as e:
|
68 |
-
print(f"Error loading FAISS index or document texts: {e}")
|
69 |
-
else:
|
70 |
-
# Create a new FAISS index if it doesn't exist
|
71 |
-
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
|
72 |
-
with open(index_path, "wb") as f:
|
73 |
-
pickle.dump(index, f)
|
74 |
-
print("Created new FAISS index and saved to faiss_index.pkl")
|
75 |
|
76 |
def upload_files(files):
|
77 |
global index, document_texts
|
78 |
try:
|
79 |
for file_path in files:
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# Process the text and update FAISS index
|
88 |
-
sentences = text.split("\n")
|
89 |
embeddings = embedding_model.encode(sentences)
|
90 |
index.add(np.array(embeddings))
|
91 |
-
|
92 |
-
|
93 |
-
#
|
94 |
-
with open(index_path, "wb") as f:
|
95 |
-
pickle.dump(index, f)
|
96 |
-
print("Saved updated FAISS index to faiss_index.pkl")
|
97 |
-
with open(document_texts_path, "wb") as f:
|
98 |
-
pickle.dump(document_texts, f)
|
99 |
-
print("Saved updated document texts to document_texts.pkl")
|
100 |
-
|
101 |
return "Files processed successfully"
|
102 |
except Exception as e:
|
103 |
print(f"Error processing files: {e}")
|
104 |
return f"Error processing files: {e}"
|
105 |
|
|
|
106 |
def query_text(text):
|
107 |
try:
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
except Exception as e:
|
122 |
print(f"Error querying text: {e}")
|
123 |
return f"Error querying text: {e}"
|
124 |
|
125 |
-
|
|
|
126 |
with gr.Blocks() as demo:
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
|
131 |
-
upload_button = gr.Button("Upload")
|
132 |
-
upload_output = gr.Textbox()
|
133 |
-
upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output)
|
134 |
-
|
135 |
-
with gr.Tab("Query"):
|
136 |
-
query = gr.Textbox(label="Enter your query")
|
137 |
-
query_button = gr.Button("Search")
|
138 |
-
query_output = gr.Textbox()
|
139 |
-
query_button.click(fn=query_text, inputs=query, outputs=query_output)
|
140 |
-
|
141 |
-
demo.launch()
|
142 |
|
143 |
|
144 |
|
|
|
10 |
from langchain_community.llms import HuggingFaceEndpoint
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
+
from nltk.tokenize import sent_tokenize # Import for sentence segmentation
|
14 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
15 |
|
16 |
+
# Function to extract text from a PDF file (same as before)
|
17 |
def extract_text_from_pdf(pdf_path):
|
18 |
+
# ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Function to extract text from a Word document (same as before)
|
21 |
def extract_text_from_docx(docx_path):
|
22 |
+
# ...
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Initialize the embedding model (same as before)
|
25 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
26 |
|
27 |
+
|
28 |
+
# Hugging Face API token (same as before)
|
29 |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
30 |
if not api_token:
|
31 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Define RAG models (replace with your chosen models)
|
35 |
+
generator_model_name = "facebook/bart-base"
|
36 |
+
retriever_model_name = "facebook/bart-base" # Can be the same as generator
|
37 |
|
38 |
+
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
|
39 |
+
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
|
40 |
+
|
41 |
+
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
|
42 |
+
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
|
43 |
+
|
44 |
+
|
45 |
+
# Load or create FAISS index (same as before)
|
46 |
index_path = "faiss_index.pkl"
|
47 |
document_texts_path = "document_texts.pkl"
|
|
|
48 |
document_texts = []
|
49 |
+
# ... (rest of the FAISS index loading logic)
|
50 |
+
|
51 |
+
|
52 |
+
def preprocess_text(text):
|
53 |
+
# ... (text preprocessing logic, same as before)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def upload_files(files):
|
57 |
global index, document_texts
|
58 |
try:
|
59 |
for file_path in files:
|
60 |
+
# ... (file processing logic, same as before)
|
61 |
+
|
62 |
+
# Preprocess text (call the new function)
|
63 |
+
sentences = preprocess_text(text)
|
64 |
+
|
65 |
+
# Encode sentences and add to FAISS index
|
|
|
|
|
|
|
66 |
embeddings = embedding_model.encode(sentences)
|
67 |
index.add(np.array(embeddings))
|
68 |
+
|
69 |
+
# Save the updated index and documents (same as before)
|
70 |
+
# ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
return "Files processed successfully"
|
72 |
except Exception as e:
|
73 |
print(f"Error processing files: {e}")
|
74 |
return f"Error processing files: {e}"
|
75 |
|
76 |
+
|
77 |
def query_text(text):
|
78 |
try:
|
79 |
+
# Preprocess query text
|
80 |
+
query_sentences = preprocess_text(text)
|
81 |
+
query_embeddings = embedding_model.encode(query_sentences)
|
82 |
+
|
83 |
+
# Retrieve relevant documents using FAISS
|
84 |
+
D, I = index.search(np.array(query_embeddings), k=5)
|
85 |
+
retrieved_docs = [document_texts[idx] for idx in I[0] if idx != -1]
|
86 |
+
|
87 |
+
# Retriever-Augmented Generation (RAG)
|
88 |
+
retriever_inputs = retriever_tokenizer(
|
89 |
+
text=retrieved_docs, return_tensors="pt", padding=True
|
90 |
+
)
|
91 |
+
retriever_outputs = retriever(**retriever_inputs)
|
92 |
+
retrieved_texts = retriever_tokenizer.batch_decode(retriever_outputs.logits)
|
93 |
+
|
94 |
+
# Generate response using retrieved information (as prompts/context)
|
95 |
+
generator_inputs = generator_tokenizer(
|
96 |
+
text=[text] + retrieved_texts, return_tensors="pt", padding=True
|
97 |
+
)
|
98 |
+
generator_outputs = generator(**generator_inputs)
|
99 |
+
response = generator_tokenizer.decode(generator_outputs.sequences[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
return response
|
102 |
except Exception as e:
|
103 |
print(f"Error querying text: {e}")
|
104 |
return f"Error querying text: {e}"
|
105 |
|
106 |
+
|
107 |
+
# Create Gradio interface
|
108 |
with gr.Blocks() as demo:
|
109 |
+
# ... (rest of the Gradio interface definition)
|
110 |
+
query_button.click(fn=query_text, inputs
|
111 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
|
114 |
|