import os import fitz from docx import Document from sentence_transformers import SentenceTransformer import faiss import numpy as np import pickle from langchain_community.llms import HuggingFaceEndpoint from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from fastapi import FastAPI, UploadFile, File from typing import List app = FastAPI() # Function to extract text from a PDF file def extract_text_from_pdf(pdf_path): text = "" doc = fitz.open(pdf_path) for page_num in range(len(doc)): page = doc.load_page(page_num) text += page.get_text() return text # Function to extract text from a Word document def extract_text_from_docx(docx_path): doc = Document(docx_path) text = "\n".join([para.text for para in doc.paragraphs]) return text # Initialize the embedding model embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Hugging Face API token api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') if not api_token: raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set") print(f"API Token: {api_token[:5]}...") # Initialize the HuggingFace LLM llm = HuggingFaceEndpoint( endpoint_url="https://api-inference.huggingface.co/models/gpt2", model_kwargs={"api_key": api_token} ) # Initialize the HuggingFace embeddings embedding = HuggingFaceEmbeddings() # Load or create FAISS index index_path = "faiss_index.pkl" if os.path.exists(index_path): with open(index_path, "rb") as f: index = pickle.load(f) else: # Create a new FAISS index if it doesn't exist index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension()) with open(index_path, "wb") as f: pickle.dump(index, f) @app.post("/upload/") async def upload_file(files: List[UploadFile] = File(...)): for file in files: content = await file.read() if file.filename.endswith('.pdf'): with open("temp.pdf", "wb") as f: f.write(content) text = extract_text_from_pdf("temp.pdf") elif file.filename.endswith('.docx'): with open("temp.docx", "wb") as f: f.write(content) text = extract_text_from_docx("temp.docx") else: return {"error": "Unsupported file format"} # Process the text and update FAISS index sentences = text.split("\n") embeddings = embedding_model.encode(sentences) index.add(np.array(embeddings)) # Save the updated index with open(index_path, "wb") as f: pickle.dump(index, f) return {"message": "Files processed successfully"} @app.post("/query/") async def query(text: str): # Encode the query text query_embedding = embedding_model.encode([text]) # Search the FAISS index D, I = index.search(np.array(query_embedding), k=5) top_documents = [] for idx in I[0]: if idx != -1: # Ensure that a valid index is found top_documents.append(f"Document {idx}") return {"top_documents": top_documents} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8001)