NaimaAqeel's picture
Update app.py
3edaa7c verified
raw
history blame
2 kB
import numpy as np
import gradio as gr
from skimage import io, color
from numpy.linalg import norm
from PIL import Image
def svd_compress_color(image, k):
"""Compress the color image using SVD by keeping only the top k singular values for each channel."""
# Initialize an empty array for the compressed image
compressed_image = np.zeros_like(image, dtype=np.float64)
# Process each color channel separately
for channel in range(3): # Assuming RGB
U, S, Vt = np.linalg.svd(image[:, :, channel], full_matrices=False)
compressed_channel = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :]))
compressed_image[:, :, channel] = compressed_channel
# Clip values to valid range [0, 255] and convert to uint8
compressed_image = np.clip(compressed_image, 0, 255)
return compressed_image.astype(np.uint8)
def process_image_color(image, k):
"""Process the uploaded image, compress it using SVD for each color channel, and return the result."""
# Convert PIL Image to NumPy array
image_np = np.array(image)
# Ensure the image has three color channels
if image_np.ndim != 3 or image_np.shape[2] != 3:
raise ValueError("Input image must be a color image with 3 channels (RGB).")
# Compress the image
compressed_image = svd_compress_color(image_np, k)
# Convert compressed image back to PIL Image for Gradio output
compressed_image_pil = Image.fromarray(compressed_image)
return compressed_image_pil
# Gradio interface
gr_interface = gr.Interface(
fn=process_image_color,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(1, 100, step=1, value=50, label="Compression Rank")
],
outputs=gr.Image(type="pil", label="Compressed Image"),
title="Interactive Image Compression using SVD",
description="Upload a color image and adjust the compression rank to see the compressed version while retaining color."
)
gr_interface.launch()