Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,37 @@
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
-
from skimage import color
|
4 |
-
from
|
5 |
from PIL import Image
|
6 |
|
7 |
-
def
|
8 |
-
"""Compress the image using
|
9 |
-
|
10 |
-
|
11 |
-
S = svd.singular_values_
|
12 |
-
Vt = svd.components_
|
13 |
-
compressed_image = np.dot(U, np.dot(np.diag(S), Vt))
|
14 |
return compressed_image
|
15 |
|
16 |
def process_image(image, k):
|
17 |
-
"""Process the uploaded image, compress it using
|
18 |
# Convert PIL Image to NumPy array
|
19 |
image_np = np.array(image)
|
20 |
|
21 |
-
# Convert to grayscale
|
22 |
gray_image = color.rgb2gray(image_np)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
gray_image = gray_image[:, :, 0]
|
27 |
-
|
28 |
-
# Compress the image using Truncated SVD
|
29 |
-
compressed_image = truncated_svd_compress(gray_image, k)
|
30 |
-
|
31 |
-
# Normalize the compressed image to the range [0, 255] and convert to uint8
|
32 |
-
compressed_image = np.clip(compressed_image, 0, 1) # Ensure values are within [0, 1]
|
33 |
-
compressed_image = (compressed_image * 255).astype(np.uint8)
|
34 |
|
35 |
# Convert compressed image back to PIL Image for Gradio output
|
36 |
-
compressed_image_pil = Image.fromarray(compressed_image)
|
37 |
-
|
38 |
-
# Ensure the PIL Image is in RGB mode for consistent display
|
39 |
-
if compressed_image_pil.mode != 'RGB':
|
40 |
-
compressed_image_pil = compressed_image_pil.convert('RGB')
|
41 |
|
42 |
return compressed_image_pil
|
43 |
|
44 |
# Gradio interface
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
outputs=gr.Image(type="pil", label="Compressed Image"),
|
52 |
-
title="Interactive Image Compression using Truncated SVD",
|
53 |
-
description="Upload an image and adjust the compression rank to see the compressed version. The app compresses the image while retaining important features."
|
54 |
-
)
|
55 |
|
56 |
-
# Launch the Gradio interface
|
57 |
gr_interface.launch()
|
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
+
from skimage import io, color
|
4 |
+
from numpy.linalg import norm
|
5 |
from PIL import Image
|
6 |
|
7 |
+
def svd_compress(image, k):
|
8 |
+
"""Compress the image using SVD by keeping only the top k singular values."""
|
9 |
+
U, S, Vt = np.linalg.svd(image, full_matrices=False)
|
10 |
+
compressed_image = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :]))
|
|
|
|
|
|
|
11 |
return compressed_image
|
12 |
|
13 |
def process_image(image, k):
|
14 |
+
"""Process the uploaded image, compress it using SVD, and return the result."""
|
15 |
# Convert PIL Image to NumPy array
|
16 |
image_np = np.array(image)
|
17 |
|
18 |
+
# Convert to grayscale
|
19 |
gray_image = color.rgb2gray(image_np)
|
20 |
|
21 |
+
# Compress the image
|
22 |
+
compressed_image = svd_compress(gray_image, k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Convert compressed image back to PIL Image for Gradio output
|
25 |
+
compressed_image_pil = Image.fromarray((compressed_image * 255).astype(np.uint8))
|
|
|
|
|
|
|
|
|
26 |
|
27 |
return compressed_image_pil
|
28 |
|
29 |
# Gradio interface
|
30 |
+
gr.Interface(fn=process_image,
|
31 |
+
inputs=[gr.Image(type="pil", shape=(500, 500)),
|
32 |
+
gr.Slider(1, 100, step=1, value=50, label="Compression Rank")],
|
33 |
+
outputs=gr.Image(type="pil"),
|
34 |
+
title="Interactive Image Compression using SVD",
|
35 |
+
description="Upload an image (500x500 max) and adjust the compression rank.")
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
gr_interface.launch()
|