NaimaAqeel commited on
Commit
a19fb9f
·
verified ·
1 Parent(s): eefc239

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -37
app.py CHANGED
@@ -1,57 +1,37 @@
1
  import numpy as np
2
  import gradio as gr
3
- from skimage import color
4
- from sklearn.decomposition import TruncatedSVD
5
  from PIL import Image
6
 
7
- def truncated_svd_compress(image, k):
8
- """Compress the image using Truncated SVD by keeping only the top k singular values."""
9
- svd = TruncatedSVD(n_components=k)
10
- U = svd.fit_transform(image)
11
- S = svd.singular_values_
12
- Vt = svd.components_
13
- compressed_image = np.dot(U, np.dot(np.diag(S), Vt))
14
  return compressed_image
15
 
16
  def process_image(image, k):
17
- """Process the uploaded image, compress it using Truncated SVD, and return the result."""
18
  # Convert PIL Image to NumPy array
19
  image_np = np.array(image)
20
 
21
- # Convert to grayscale for SVD
22
  gray_image = color.rgb2gray(image_np)
23
 
24
- # Ensure the image is 2D for SVD
25
- if len(gray_image.shape) == 3:
26
- gray_image = gray_image[:, :, 0]
27
-
28
- # Compress the image using Truncated SVD
29
- compressed_image = truncated_svd_compress(gray_image, k)
30
-
31
- # Normalize the compressed image to the range [0, 255] and convert to uint8
32
- compressed_image = np.clip(compressed_image, 0, 1) # Ensure values are within [0, 1]
33
- compressed_image = (compressed_image * 255).astype(np.uint8)
34
 
35
  # Convert compressed image back to PIL Image for Gradio output
36
- compressed_image_pil = Image.fromarray(compressed_image)
37
-
38
- # Ensure the PIL Image is in RGB mode for consistent display
39
- if compressed_image_pil.mode != 'RGB':
40
- compressed_image_pil = compressed_image_pil.convert('RGB')
41
 
42
  return compressed_image_pil
43
 
44
  # Gradio interface
45
- gr_interface = gr.Interface(
46
- fn=process_image, # Image processing function
47
- inputs=[
48
- gr.Image(type="pil", label="Upload Image"),
49
- gr.Slider(1, 100, step=1, value=50, label="Compression Rank") # Compression rank slider
50
- ],
51
- outputs=gr.Image(type="pil", label="Compressed Image"),
52
- title="Interactive Image Compression using Truncated SVD",
53
- description="Upload an image and adjust the compression rank to see the compressed version. The app compresses the image while retaining important features."
54
- )
55
 
56
- # Launch the Gradio interface
57
  gr_interface.launch()
 
1
  import numpy as np
2
  import gradio as gr
3
+ from skimage import io, color
4
+ from numpy.linalg import norm
5
  from PIL import Image
6
 
7
+ def svd_compress(image, k):
8
+ """Compress the image using SVD by keeping only the top k singular values."""
9
+ U, S, Vt = np.linalg.svd(image, full_matrices=False)
10
+ compressed_image = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :]))
 
 
 
11
  return compressed_image
12
 
13
  def process_image(image, k):
14
+ """Process the uploaded image, compress it using SVD, and return the result."""
15
  # Convert PIL Image to NumPy array
16
  image_np = np.array(image)
17
 
18
+ # Convert to grayscale
19
  gray_image = color.rgb2gray(image_np)
20
 
21
+ # Compress the image
22
+ compressed_image = svd_compress(gray_image, k)
 
 
 
 
 
 
 
 
23
 
24
  # Convert compressed image back to PIL Image for Gradio output
25
+ compressed_image_pil = Image.fromarray((compressed_image * 255).astype(np.uint8))
 
 
 
 
26
 
27
  return compressed_image_pil
28
 
29
  # Gradio interface
30
+ gr.Interface(fn=process_image,
31
+ inputs=[gr.Image(type="pil", shape=(500, 500)),
32
+ gr.Slider(1, 100, step=1, value=50, label="Compression Rank")],
33
+ outputs=gr.Image(type="pil"),
34
+ title="Interactive Image Compression using SVD",
35
+ description="Upload an image (500x500 max) and adjust the compression rank.")
 
 
 
 
36
 
 
37
  gr_interface.launch()