NaimaAqeel commited on
Commit
a7df863
·
verified ·
1 Parent(s): decd361

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -58
main.py DELETED
@@ -1,58 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
- import streamlit as st
4
- from skimage import io, color
5
- from numpy.linalg import norm
6
-
7
- def svd_compress(image, k):
8
- """Compress the image using SVD by keeping only the top k singular values."""
9
- U, S, Vt = np.linalg.svd(image, full_matrices=False)
10
- compressed_image = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :]))
11
- return compressed_image
12
-
13
- def compute_norms(original, compressed):
14
- """Compute different norms to compare image quality."""
15
- frobenius_norm = norm(original - compressed, 'fro')
16
- l2_norm = norm(original - compressed)
17
- max_norm = norm(original - compressed, np.inf)
18
- return frobenius_norm, l2_norm, max_norm
19
-
20
- def plot_images(original, compressed, k):
21
- """Plot original and compressed images side by side."""
22
- fig, axes = plt.subplots(1, 2, figsize=(12, 6))
23
- axes[0].imshow(original, cmap='gray')
24
- axes[0].set_title("Original Image")
25
- axes[0].axis('off')
26
-
27
- axes[1].imshow(compressed, cmap='gray')
28
- axes[1].set_title(f"Compressed Image (Rank {k})")
29
- axes[1].axis('off')
30
-
31
- st.pyplot(fig)
32
-
33
- # Streamlit app
34
- st.title("Image Compression using SVD")
35
-
36
- # Upload an image
37
- uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
38
- if uploaded_file is not None:
39
- # Load the image
40
- image = io.imread(uploaded_file)
41
- gray_image = color.rgb2gray(image)
42
-
43
- # Select compression rank
44
- k = st.slider("Select the rank for compression", min_value=1, max_value=min(gray_image.shape), value=50)
45
-
46
- # Compress the image
47
- compressed_image = svd_compress(gray_image, k)
48
-
49
- # Compute norms
50
- frobenius_norm, l2_norm, max_norm = compute_norms(gray_image, compressed_image)
51
-
52
- # Display norms
53
- st.write(f"Frobenius Norm: {frobenius_norm}")
54
- st.write(f"L2 Norm: {l2_norm}")
55
- st.write(f"Max Norm: {max_norm}")
56
-
57
- # Plot images
58
- plot_images(gray_image, compressed_image, k)