Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,9 @@
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
-
import cv2 # OpenCV for face detection
|
4 |
from skimage import color
|
5 |
from sklearn.decomposition import TruncatedSVD
|
6 |
-
from concurrent.futures import ThreadPoolExecutor
|
7 |
from PIL import Image
|
8 |
|
9 |
-
# Detect faces using OpenCV
|
10 |
-
def detect_faces(image_np):
|
11 |
-
"""Detect faces in the image and return their bounding boxes."""
|
12 |
-
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
13 |
-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
14 |
-
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)
|
15 |
-
return faces
|
16 |
-
|
17 |
-
# Compress the image using Truncated SVD for faster performance
|
18 |
def truncated_svd_compress(image, k):
|
19 |
"""Compress the image using Truncated SVD by keeping only the top k singular values."""
|
20 |
svd = TruncatedSVD(n_components=k)
|
@@ -24,33 +13,27 @@ def truncated_svd_compress(image, k):
|
|
24 |
compressed_image = np.dot(U, np.dot(np.diag(S), Vt))
|
25 |
return compressed_image
|
26 |
|
27 |
-
# Process the image asynchronously for smoother user experience
|
28 |
-
async def process_image_async(image, k):
|
29 |
-
"""Asynchronous image processing to avoid blocking."""
|
30 |
-
return await asyncio.to_thread(process_image, image, k)
|
31 |
-
|
32 |
-
# Main image processing function
|
33 |
def process_image(image, k):
|
34 |
-
"""Process the uploaded image,
|
35 |
# Convert PIL Image to NumPy array
|
36 |
image_np = np.array(image)
|
37 |
|
38 |
-
#
|
39 |
-
faces = detect_faces(image_np)
|
40 |
-
|
41 |
-
# If faces are detected, highlight the regions (optional)
|
42 |
-
if len(faces) > 0:
|
43 |
-
for (x, y, w, h) in faces:
|
44 |
-
cv2.rectangle(image_np, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
45 |
-
|
46 |
-
# Convert the image to grayscale
|
47 |
gray_image = color.rgb2gray(image_np)
|
48 |
|
49 |
-
#
|
|
|
|
|
|
|
|
|
50 |
compressed_image = truncated_svd_compress(gray_image, k)
|
51 |
|
|
|
|
|
|
|
|
|
52 |
# Convert compressed image back to PIL Image for Gradio output
|
53 |
-
compressed_image_pil = Image.fromarray(
|
54 |
|
55 |
return compressed_image_pil
|
56 |
|
@@ -62,9 +45,9 @@ gr_interface = gr.Interface(
|
|
62 |
gr.Slider(1, 100, step=1, value=50, label="Compression Rank") # Compression rank slider
|
63 |
],
|
64 |
outputs=gr.Image(type="pil", label="Compressed Image"),
|
65 |
-
title="
|
66 |
-
description="Upload an image and adjust the compression rank. The app
|
67 |
)
|
68 |
|
69 |
# Launch the Gradio interface
|
70 |
-
gr_interface.launch()
|
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
|
|
3 |
from skimage import color
|
4 |
from sklearn.decomposition import TruncatedSVD
|
|
|
5 |
from PIL import Image
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def truncated_svd_compress(image, k):
|
8 |
"""Compress the image using Truncated SVD by keeping only the top k singular values."""
|
9 |
svd = TruncatedSVD(n_components=k)
|
|
|
13 |
compressed_image = np.dot(U, np.dot(np.diag(S), Vt))
|
14 |
return compressed_image
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def process_image(image, k):
|
17 |
+
"""Process the uploaded image, compress it using Truncated SVD, and return the result."""
|
18 |
# Convert PIL Image to NumPy array
|
19 |
image_np = np.array(image)
|
20 |
|
21 |
+
# Convert to grayscale for SVD
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
gray_image = color.rgb2gray(image_np)
|
23 |
|
24 |
+
# Ensure the image is 2D for SVD
|
25 |
+
if len(gray_image.shape) == 3:
|
26 |
+
gray_image = gray_image[:, :, 0]
|
27 |
+
|
28 |
+
# Compress the image using Truncated SVD
|
29 |
compressed_image = truncated_svd_compress(gray_image, k)
|
30 |
|
31 |
+
# Normalize the compressed image to the range [0, 255] and convert to uint8
|
32 |
+
compressed_image = np.clip(compressed_image, 0, 1) # Ensure values are within [0, 1]
|
33 |
+
compressed_image = (compressed_image * 255).astype(np.uint8)
|
34 |
+
|
35 |
# Convert compressed image back to PIL Image for Gradio output
|
36 |
+
compressed_image_pil = Image.fromarray(compressed_image)
|
37 |
|
38 |
return compressed_image_pil
|
39 |
|
|
|
45 |
gr.Slider(1, 100, step=1, value=50, label="Compression Rank") # Compression rank slider
|
46 |
],
|
47 |
outputs=gr.Image(type="pil", label="Compressed Image"),
|
48 |
+
title="Interactive Image Compression using Truncated SVD",
|
49 |
+
description="Upload an image and adjust the compression rank to see the compressed version. The app compresses the image while retaining important features."
|
50 |
)
|
51 |
|
52 |
# Launch the Gradio interface
|
53 |
+
gr_interface.launch()
|