NaimaAqeel commited on
Commit
d243d0e
·
verified ·
1 Parent(s): f5c895a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -35
app.py CHANGED
@@ -1,44 +1,33 @@
1
  import numpy as np
 
2
  from skimage import io, color
3
- from skimage.transform import resize
4
- from sklearn.decomposition import TruncatedSVD
5
- import streamlit as st
6
 
7
- def resize_image(image, target_shape=(500, 500)):
8
- """Resize image to reduce processing time."""
9
- return resize(image, target_shape, anti_aliasing=True)
10
-
11
- def truncated_svd_compress(image, k):
12
- """Compress the image using Truncated SVD by keeping only the top k singular values."""
13
- svd = TruncatedSVD(n_components=k)
14
- U = svd.fit_transform(image)
15
- V = svd.components_
16
- S = svd.singular_values_
17
- compressed_image = np.dot(U, np.dot(np.diag(S), V))
18
  return compressed_image
19
 
20
- # Streamlit app
21
- st.title("Fast Image Compression using Truncated SVD")
22
-
23
- # Upload an image
24
- uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
25
- if uploaded_file is not None:
26
- # Load the image
27
- image = io.imread(uploaded_file)
28
- gray_image = color.rgb2gray(image)
29
 
30
- # Resize the image for faster processing
31
- resized_image = resize_image(gray_image)
32
 
33
- # Select compression rank
34
- k = st.slider("Select the rank for compression", min_value=1, max_value=min(resized_image.shape), value=50)
35
-
36
- # Compress the image using Truncated SVD
37
- compressed_image = truncated_svd_compress(resized_image, k)
38
 
39
- # Normalize the images for display
40
- gray_image_display = (resized_image - resized_image.min()) / (resized_image.max() - resized_image.min())
41
- compressed_image_display = (compressed_image - compressed_image.min()) / (compressed_image.max() - compressed_image.min())
 
 
 
42
 
43
- # Display original and compressed images
44
- st.image([gray_image_display, compressed_image_display], caption=["Original", "Compressed"], use_column_width=True)
 
1
  import numpy as np
2
+ import gradio as gr
3
  from skimage import io, color
4
+ from numpy.linalg import norm
5
+ from PIL import Image
 
6
 
7
+ def svd_compress(image, k):
8
+ """Compress the image using SVD by keeping only the top k singular values."""
9
+ U, S, Vt = np.linalg.svd(image, full_matrices=False)
10
+ compressed_image = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :]))
 
 
 
 
 
 
 
11
  return compressed_image
12
 
13
+ def process_image(image, k):
14
+ """Process the uploaded image, compress it using SVD, and return the result."""
15
+ # Convert PIL Image to NumPy array
16
+ image_np = np.array(image)
 
 
 
 
 
17
 
18
+ # Compress the image
19
+ compressed_image = svd_compress(gray_image, k)
20
 
21
+ # Convert compressed image back to PIL Image for Gradio output
22
+ compressed_image_pil = Image.fromarray((compressed_image * 255).astype(np.uint8))
23
+
24
+ return compressed_image_pil
 
25
 
26
+ # Gradio interface
27
+ gr_interface = gr.Interface(fn=process_image,
28
+ inputs=[gr.Image(type="pil"), gr.Slider(1, 100, step=1, value=50, label="Compression Rank")],
29
+ outputs=gr.Image(type="pil"),
30
+ title="Interactive Image Compression using SVD",
31
+ description="Upload an image and adjust the compression rank to see the compressed version.")
32
 
33
+ gr_interface.launch()