import numpy as np import matplotlib.pyplot as plt import streamlit as st from skimage import io, color from numpy.linalg import norm def svd_compress(image, k): """Compress the image using SVD by keeping only the top k singular values.""" U, S, Vt = np.linalg.svd(image, full_matrices=False) compressed_image = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :])) return compressed_image def compute_norms(original, compressed): """Compute different norms to compare image quality.""" frobenius_norm = norm(original - compressed, 'fro') l2_norm = norm(original - compressed) max_norm = norm(original - compressed, np.inf) return frobenius_norm, l2_norm, max_norm def plot_images(original, compressed, k): """Plot original and compressed images side by side.""" fig, axes = plt.subplots(1, 2, figsize=(12, 6)) axes[0].imshow(original, cmap='gray') axes[0].set_title("Original Image") axes[0].axis('off') axes[1].imshow(compressed, cmap='gray') axes[1].set_title(f"Compressed Image (Rank {k})") axes[1].axis('off') st.pyplot(fig) # Streamlit app st.title("Image Compression using SVD") # Upload an image uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: # Load the image image = io.imread(uploaded_file) gray_image = color.rgb2gray(image) # Select compression rank k = st.slider("Select the rank for compression", min_value=1, max_value=min(gray_image.shape), value=50) # Compress the image compressed_image = svd_compress(gray_image, k) # Compute norms frobenius_norm, l2_norm, max_norm = compute_norms(gray_image, compressed_image) # Display norms st.write(f"Frobenius Norm: {frobenius_norm}") st.write(f"L2 Norm: {l2_norm}") st.write(f"Max Norm: {max_norm}") # Plot images plot_images(gray_image, compressed_image, k)