import logging import os from fastapi import FastAPI, UploadFile, File, HTTPException from fastapi.responses import HTMLResponse, JSONResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles from langchain.vectorstores import Chroma from langchain.llms import OpenAI from langchain.vectorstores.cassandra import Cassandra from langchain.indexes.vectorstore import VectorStoreIndexWrapper from langchain.chains import RetrievalQA from langchain.document_loaders import PyPDFLoader from langchain.vectorstores.base import VectorStoreRetriever from langchain.text_splitter import CharacterTextSplitter from azure.core.credentials import AzureKeyCredential from azure.ai.inference import EmbeddingsClient import cassio from pydantic import BaseModel import shutil from config import settings app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) logging.basicConfig(level=logging.ERROR) logger = logging.getLogger(__name__) HUGGINGFACE_API_KEY = settings.huggingface_key ASTRA_DB_APPLICATION_TOKEN = settings.astra_db_application_token ASTRA_DB_ID = settings.astra_db_id OPENAI_API_KEY = settings.openai_api_key GITHUB_TOKEN = settings.github_token AZURE_OPENAI_ENDPOINT = settings.azure_openai_endpoint AZURE_OPENAI_MODELNAME = settings.azure_openai_modelname AZURE_OPENAI_EMBEDMODELNAME = settings.azure_openai_embedmodelname UPLOAD_FOLDER = '/uploads' conversation_retrieval_chain = None chat_history = [] llm = None embedding = None cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID) class MessageRequest(BaseModel): userMessage: str class AzureOpenAIEmbeddings: def __init__(self, client): self.client = client self.model_name = AZURE_OPENAI_EMBEDMODELNAME # Store model name def embed_query(self, text: str): """Embed a query.""" response = self.client.embed( input=[text], model=self.model_name ) return response.data[0].embedding def embed_documents(self, texts: list): """Embed a list of documents.""" response = self.client.embed( input=texts, model=self.model_name ) return [item.embedding for item in response.data] def init_llm(): global llm, embedding llm = OpenAI( base_url=AZURE_OPENAI_ENDPOINT, api_key=GITHUB_TOKEN, model=AZURE_OPENAI_MODELNAME ) embedding = EmbeddingsClient( endpoint=AZURE_OPENAI_ENDPOINT, credential=AzureKeyCredential(GITHUB_TOKEN), model=AZURE_OPENAI_EMBEDMODELNAME ) def process_document(document_path): init_llm() global conversation_retrieval_chain loader = PyPDFLoader(document_path) documents = loader.load() text_splitter = CharacterTextSplitter( chunk_size=800, chunk_overlap=200, ) raw_text = "".join([doc.page_content for doc in documents]) texts = text_splitter.split_text(raw_text) custom_embedding = AzureOpenAIEmbeddings(embedding) astra_vector_store = Cassandra( embedding=custom_embedding, table_name="qa_mini_demo", session=None, keyspace=None, ) astra_vector_store.add_texts(texts[:500]) retriever = VectorStoreRetriever( vectorstore=astra_vector_store, search_type="mmr", search_kwargs={'k': 1, 'lambda_mult': 0.25} ) conversation_retrieval_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=False, input_key="question" ) def process_prompt(prompt): init_llm() global chat_history global conversation_retrieval_chain output = conversation_retrieval_chain({"question": prompt+"you should only give answer to the question ,do not give any other information", "chat_history": chat_history}) answer = output["result"] chat_history.append((prompt, answer)) return answer # Define the route for the index page @app.get("/", response_class=HTMLResponse) async def index(): return """