|
from langchain_community.document_loaders import PyPDFLoader |
|
|
|
from datasets import load_dataset |
|
dataset = load_dataset("Namitg02/Test") |
|
print(dataset) |
|
|
|
from langchain.docstore.document import Document as LangchainDocument |
|
|
|
RAW_KNOWLEDGE_BASE = [ |
|
LangchainDocument(page_content=doc["dataset"], metadata={"one": doc["two"]}) |
|
] |
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""]) |
|
docs = splitter.split_documents(RAW_KNOWLEDGE_BASE) |
|
|
|
|
|
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") |
|
|
|
|
|
|
|
from langchain_community.vectorstores import Chroma |
|
persist_directory = 'docs/chroma/' |
|
|
|
vectordb = Chroma.from_documents( |
|
documents=[docs], |
|
embedding=embedding_model, |
|
persist_directory=persist_directory |
|
) |
|
|
|
|
|
retriever = vectordb.as_retriever() |
|
|
|
import gradio as gr |
|
gr.load("models/HuggingFaceH4/zephyr-7b-beta").launch() |