|
from datasets import load_dataset |
|
dataset = load_dataset("Namitg02/Test") |
|
print(dataset) |
|
|
|
from langchain.docstore.document import Document as LangchainDocument |
|
|
|
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""]) |
|
|
|
docs = splitter.create_documents(str(dataset)) |
|
|
|
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") |
|
|
|
|
|
|
|
from langchain_community.vectorstores import Chroma |
|
persist_directory = 'docs/chroma/' |
|
|
|
vectordb = Chroma.from_documents( |
|
documents=docs, |
|
embedding=embedding_model, |
|
persist_directory=persist_directory |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from langchain.prompts import PromptTemplate |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.memory import ConversationBufferMemory |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
return_messages=True |
|
) |
|
|
|
question = "How can I reverse Diabetes?" |
|
print("template") |
|
|
|
retriever = vectordb.as_retriever( |
|
search_type="similarity", search_kwargs={"k": 2} |
|
) |
|
|
|
from langchain.chains import RetrievalQA |
|
|
|
|
|
|
|
READER_MODEL = "zephyr-7b-beta" |
|
|
|
|
|
qa = RetrievalQA.from_chain_type(llm=READER_MODEL,chain_type="map_reduce",retriever=retriever,verbose=True) |
|
result = qa(question) |
|
import gradio as gr |
|
gr.load("READER_MODEL").launch() |
|
|
|
|
|
print("qa") |
|
|