from datasets import load_dataset | |
from datasets import Dataset | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import time | |
import json | |
#import torch | |
import pandas as pd | |
from llama_cpp import Llama | |
from langchain_community.llms import LlamaCpp | |
from threading import Thread | |
from huggingface_hub import Repository, upload_file | |
import os | |
HF_TOKEN = os.getenv('HF_Token') | |
#Log_Path="./Logfolder" | |
logfile = 'DiabetesChatLog.txt' | |
historylog = [{ | |
"Prompt": '', | |
"Output": '' | |
}] | |
data = load_dataset("Namitg02/Test", split='train', streaming=False) | |
#Returns a list of dictionaries, each representing a row in the dataset. | |
length = len(data) | |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2") | |
embedding_dim = embedding_model.get_sentence_embedding_dimension() | |
# Returns dimensions of embedidng | |
index = faiss.IndexFlatL2(embedding_dim) | |
data.add_faiss_index("embeddings", custom_index=index) | |
# adds an index column for the embeddings | |
#question = "How can I reverse Diabetes?" | |
SYS_PROMPT = """You are an assistant for answering questions. | |
You are given the extracted parts of documents and a question. Provide a conversational answer. | |
If you don't know the answer, just say "I do not know." Don't make up an answer. Don't repeat the SYS_PROMPT.""" | |
# Provides context of how to answer the question | |
llm_model = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" | |
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF and tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf not working, TinyLlama/TinyLlama-1.1B-Chat-v0.6, andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF" | |
model = Llama( | |
model_path="./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", | |
# chat_format="llama-2", | |
n_gpu_layers = 0, | |
temperature=0.75, | |
max_tokens=500, | |
top_p=0.95 #, | |
# eos_tokens=terminators | |
# callback_manager=callback_manager, | |
# verbose=True, # Verbose is required to pass to the callback manager | |
) | |
#initiate model and tokenizer | |
def search(query: str, k: int = 2 ): | |
"""a function that embeds a new query and returns the most probable results""" | |
embedded_query = embedding_model.encode(query) # create embedding of a new query | |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results | |
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings | |
k=k # get only top k results | |
) | |
return scores, retrieved_examples | |
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format | |
# called by talk function that passes prompt | |
def format_prompt(prompt,retrieved_documents,k): | |
"""using the retrieved documents we will prompt the model to generate our responses""" | |
PROMPT = f"Question:{prompt}\nContext:" | |
for idx in range(k) : | |
PROMPT+= f"{retrieved_documents['0'][idx]}\n" | |
return PROMPT | |
#def add_history(formatted_prompt, history, memory_limit=3): | |
# always keep len(history) <= memory_limit | |
# if len(history) > memory_limit: | |
# history = history[-memory_limit:] | |
# if len(history) == 0: | |
# return PROMPT + f"{formatted_prompt} [/INST]" | |
#formatted_message = PROMPT + f"{history[0][0]} [/INST] {history[0][1]} </s>" | |
# Handle conversation history | |
# for user_msg, model_answer in history[1:]: | |
# formatted_message += f"<s>[INST] {user_msg} [/INST] {model_answer} </s>" | |
# # Handle the current message | |
# formatted_message += f"<s>[INST] {formatted_prompt} [/INST]" | |
#return formatted_message | |
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived | |
def talk(prompt, history): | |
k = 2 # number of retrieved documents | |
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed | |
print(retrieved_documents.keys()) | |
# print("check4") | |
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents | |
print("check5") | |
# print(retrieved_documents['0']) | |
# print(formatted_prompt) | |
# formatted_prompt_with_history = add_history(formatted_prompt, history) | |
# formatted_prompt_with_history = formatted_prompt_with_history[:600] # to avoid memory issue | |
# print(formatted_prompt_with_history) | |
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] | |
# binding the system context and new prompt for LLM | |
# the chat template structure should be based on text generation model format | |
# indicates the end of a sequence | |
stream = model.create_chat_completion(messages = messages, max_tokens=1000, stop=["</s>"], stream=True) | |
# print(f"{stream}") | |
print("check 7") | |
# print(stream['choices'][0]['message']['content']) | |
# return(stream['choices'][0]['message']['content']) | |
text = "" | |
for output in stream: | |
text += output['choices']['message']['content'] | |
print(f"{output}") | |
print("check3H") | |
print(text) | |
return(text) | |
# text.append(output['choices'][0]) | |
# print(f"{text}") | |
# yield "".join(text) | |
# print(text) | |
# preparing tokens for model input | |
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response | |
# calling the model to generate response based on message/ input | |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary | |
# temperature controls randomness. more renadomness with higher temperature | |
# only the tokens comprising the top_p probability mass are considered for responses | |
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary. | |
# start = time.time() | |
# NUM_TOKENS=0 | |
# time_generate = time.time() - start | |
# print('\n') | |
# print('-'*4+'End Generation'+'-'*4) | |
# print(f'Num of generated tokens: {NUM_TOKENS}') | |
# print(f'Time for complete generation: {time_generate}s') | |
# print(f'Tokens per secound: {NUM_TOKENS/time_generate}') | |
# print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') | |
TITLE = "AI Copilot for Diabetes Patients" | |
DESCRIPTION = "I provide answers to concerns related to Diabetes" | |
import gradio as gr | |
# Design chatbot | |
demo = gr.ChatInterface( | |
fn=talk, | |
chatbot=gr.Chatbot( | |
show_label=True, | |
show_share_button=True, | |
show_copy_button=True, | |
likeable=True, | |
layout="bubble", | |
bubble_full_width=False, | |
), | |
theme="Soft", | |
examples=[["what is Diabetes? "]], | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
# launch chatbot and calls the talk function which in turn calls other functions | |
print("check14") | |
#print(historylog) | |
#memory_panda = pd.DataFrame(historylog) | |
#Logfile = Dataset.from_pandas(memory_panda) | |
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN) | |
demo.launch() |