Update app.py
Browse files
app.py
CHANGED
@@ -60,22 +60,35 @@ retriever = vectordb.as_retriever(
|
|
60 |
|
61 |
from langchain.chains import create_retrieval_chain
|
62 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
63 |
-
from langchain import hub
|
|
|
64 |
|
65 |
READER_MODEL="HuggingFaceH4/zephyr-7b-beta"
|
66 |
#HuggingFaceH4/zephyr-7b-beta
|
67 |
#qa = ConversationalRetrievalChain.from_llm(llm=READER_MODEL,retriever=retriever,memory=memory)
|
68 |
#qa = RetrievalQA.from_chain_type(llm=READER_MODEL,chain_type="map_reduce",retriever=retriever,verbose=True)
|
69 |
|
70 |
-
retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
-
result = qa(question)
|
77 |
-
import gradio as gr
|
78 |
-
gr.load("READER_MODEL").launch()
|
79 |
|
80 |
#result = ({"query": question})
|
81 |
-
print("qa")
|
|
|
60 |
|
61 |
from langchain.chains import create_retrieval_chain
|
62 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
63 |
+
#from langchain import hub
|
64 |
+
|
65 |
|
66 |
READER_MODEL="HuggingFaceH4/zephyr-7b-beta"
|
67 |
#HuggingFaceH4/zephyr-7b-beta
|
68 |
#qa = ConversationalRetrievalChain.from_llm(llm=READER_MODEL,retriever=retriever,memory=memory)
|
69 |
#qa = RetrievalQA.from_chain_type(llm=READER_MODEL,chain_type="map_reduce",retriever=retriever,verbose=True)
|
70 |
|
71 |
+
#retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
|
72 |
+
|
73 |
+
qa_chat_prompt = ChatPromptTemplate.from_template("""Answer the following question based only on the provided context:
|
74 |
+
|
75 |
+
<context>
|
76 |
+
{Tou are a doctor}
|
77 |
+
</context>
|
78 |
+
|
79 |
+
Question: {input}""")
|
80 |
+
|
81 |
+
docs_chain = create_stuff_documents_chain(
|
82 |
+
READER_MODEL, qa_chat_prompt
|
83 |
)
|
84 |
+
retrieval_chain = create_retrieval_chain(retriever, docs_chain)
|
85 |
+
response = retrieval_chain.invoke({"input": "how can I reverse diabetes?"})
|
86 |
+
print(response["answer"])
|
87 |
+
|
88 |
|
89 |
+
#result = qa(question)
|
90 |
+
#import gradio as gr
|
91 |
+
#gr.load("READER_MODEL").launch()
|
92 |
|
93 |
#result = ({"query": question})
|
94 |
+
#print("qa")
|