Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import faiss
|
|
5 |
import time
|
6 |
#import torch
|
7 |
import pandas as pd
|
|
|
8 |
|
9 |
from transformers import AutoTokenizer, GenerationConfig #, AutoModelForCausalLM
|
10 |
#from transformers import AutoModelForCausalLM, AutoModel
|
@@ -64,8 +65,18 @@ generation_config = AutoConfig.from_pretrained(
|
|
64 |
)
|
65 |
# send additional parameters to model for generation
|
66 |
|
67 |
-
model = AutoModelForCausalLM.from_pretrained(llm_model, model_file = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", model_type="llama", gpu_layers=0, config = generation_config)
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def search(query: str, k: int = 2 ):
|
70 |
"""a function that embeds a new query and returns the most probable results"""
|
71 |
embedded_query = embedding_model.encode(query) # create embedding of a new query
|
@@ -117,11 +128,13 @@ def talk(prompt, history):
|
|
117 |
]
|
118 |
# indicates the end of a sequence
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
# preparing tokens for model input
|
126 |
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
|
127 |
# print(input_ids)
|
@@ -152,24 +165,26 @@ def talk(prompt, history):
|
|
152 |
# print("check11")
|
153 |
# start a thread
|
154 |
outputs = []
|
155 |
-
print(
|
156 |
-
print(*messages)
|
157 |
print(model.tokenize(messages))
|
|
|
|
|
|
|
158 |
# input_ids = tokenizer(*messages)
|
159 |
# print(model.generate(tensor([[ 1, 529, 29989, 5205, 29989]])))
|
160 |
-
start = time.time()
|
161 |
-
NUM_TOKENS=0
|
162 |
-
print('-'*4+'Start Generation'+'-'*4)
|
163 |
-
for token in model.generate(input_ids):
|
164 |
-
print(model.detokenize(input_ids), end='', flush=True)
|
165 |
-
NUM_TOKENS+=1
|
166 |
-
time_generate = time.time() - start
|
167 |
-
print('\n')
|
168 |
-
print('-'*4+'End Generation'+'-'*4)
|
169 |
-
print(f'Num of generated tokens: {NUM_TOKENS}')
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
|
174 |
|
175 |
#outputtokens = model.generate(input_ids)
|
|
|
5 |
import time
|
6 |
#import torch
|
7 |
import pandas as pd
|
8 |
+
from llama_cpp import Llama
|
9 |
|
10 |
from transformers import AutoTokenizer, GenerationConfig #, AutoModelForCausalLM
|
11 |
#from transformers import AutoModelForCausalLM, AutoModel
|
|
|
65 |
)
|
66 |
# send additional parameters to model for generation
|
67 |
|
68 |
+
#model = llama_cpp.Llama(model_path = tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf AutoModelForCausalLM.from_pretrained(llm_model, model_file = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", model_type="llama", gpu_layers=0, config = generation_config)
|
69 |
+
model = LlamaCpp(
|
70 |
+
model_path="./tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
71 |
+
chat_format="llama-2"
|
72 |
+
n_gpu_layers = 0,
|
73 |
+
temperature=0.75,
|
74 |
+
max_tokens=500,
|
75 |
+
top_p=0.95,
|
76 |
+
# callback_manager=callback_manager,
|
77 |
+
# verbose=True, # Verbose is required to pass to the callback manager
|
78 |
+
)
|
79 |
+
|
80 |
def search(query: str, k: int = 2 ):
|
81 |
"""a function that embeds a new query and returns the most probable results"""
|
82 |
embedded_query = embedding_model.encode(query) # create embedding of a new query
|
|
|
128 |
]
|
129 |
# indicates the end of a sequence
|
130 |
|
131 |
+
model_input = model.create_chat_completion(messages = messages)
|
132 |
+
|
133 |
+
# input_ids = tokenizer.apply_chat_template(
|
134 |
+
# messages,
|
135 |
+
# add_generation_prompt=True,
|
136 |
+
# return_tensors="pt"
|
137 |
+
# )
|
138 |
# preparing tokens for model input
|
139 |
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
|
140 |
# print(input_ids)
|
|
|
165 |
# print("check11")
|
166 |
# start a thread
|
167 |
outputs = []
|
168 |
+
print(model_input)
|
|
|
169 |
print(model.tokenize(messages))
|
170 |
+
tokens = model.tokenize(messages)
|
171 |
+
for token in model.generate(tokens):
|
172 |
+
print(model.detokenize([token]))
|
173 |
# input_ids = tokenizer(*messages)
|
174 |
# print(model.generate(tensor([[ 1, 529, 29989, 5205, 29989]])))
|
175 |
+
# start = time.time()
|
176 |
+
# NUM_TOKENS=0
|
177 |
+
# print('-'*4+'Start Generation'+'-'*4)
|
178 |
+
# for token in model.generate(input_ids):
|
179 |
+
# print(model.detokenize(input_ids), end='', flush=True)
|
180 |
+
# NUM_TOKENS+=1
|
181 |
+
# time_generate = time.time() - start
|
182 |
+
# print('\n')
|
183 |
+
# print('-'*4+'End Generation'+'-'*4)
|
184 |
+
# print(f'Num of generated tokens: {NUM_TOKENS}')
|
185 |
+
# print(f'Time for complete generation: {time_generate}s')
|
186 |
+
# print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
|
187 |
+
# print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
|
188 |
|
189 |
|
190 |
#outputtokens = model.generate(input_ids)
|