Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,38 @@
|
|
1 |
from datasets import load_dataset
|
2 |
-
dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
3 |
-
print(dataset)
|
4 |
-
|
5 |
from langchain.docstore.document import Document as LangchainDocument
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
|
8 |
-
docs = splitter.create_documents(str(dataset))
|
9 |
-
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
-
embedding_model = HuggingFaceEmbeddings(model_name = "all-MiniLM-L6-v2")
|
13 |
-
|
14 |
from langchain_community.vectorstores import FAISS
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
from
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# documents=docs,
|
26 |
-
# embedding=embedding_model,
|
27 |
-
# persist_directory=persist_directory
|
28 |
-
#)
|
29 |
|
30 |
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
|
|
|
36 |
|
37 |
-
|
38 |
-
from langchain.chains import ConversationalRetrievalChain
|
39 |
-
from langchain.memory import ConversationBufferMemory
|
40 |
|
41 |
-
|
42 |
-
memory_key="chat_history",
|
43 |
-
return_messages=True
|
44 |
-
)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
from langchain_core.prompts import HumanMessagePromptTemplate
|
50 |
-
from langchain_core.prompts import ChatPromptTemplate
|
51 |
-
from langchain.prompts import PromptTemplate
|
52 |
-
import time
|
53 |
|
54 |
|
55 |
print("check1")
|
@@ -58,37 +41,36 @@ question = "How can I reverse Diabetes?"
|
|
58 |
SYS_PROMPT = """You are an assistant for answering questions.
|
59 |
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|
60 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
|
|
61 |
|
62 |
print("check2")
|
63 |
|
64 |
|
65 |
-
|
66 |
-
from transformers import AutoTokenizer
|
67 |
-
from transformers import AutoModelForCausalLM
|
68 |
-
from transformers import TextIteratorStreamer
|
69 |
-
from threading import Thread
|
70 |
-
|
71 |
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
72 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
|
|
73 |
model = AutoModelForCausalLM.from_pretrained(llm_model)
|
74 |
-
#
|
75 |
|
76 |
terminators = [
|
77 |
-
tokenizer.eos_token_id,
|
78 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
79 |
]
|
80 |
-
|
81 |
|
82 |
|
83 |
def search(query: str, k: int = 3 ):
|
84 |
"""a function that embeds a new query and returns the most probable results"""
|
85 |
-
embedded_query = embedding_model.encode(query) #
|
86 |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
87 |
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
|
88 |
k=k # get only top k results
|
89 |
)
|
90 |
return scores, retrieved_examples
|
|
|
|
|
91 |
|
|
|
92 |
print("check2A")
|
93 |
|
94 |
|
@@ -99,57 +81,73 @@ def format_prompt(prompt,retrieved_documents,k):
|
|
99 |
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
|
100 |
return PROMPT
|
101 |
|
|
|
102 |
|
103 |
print("check3")
|
104 |
-
|
105 |
|
106 |
print("check3A")
|
107 |
|
108 |
|
109 |
def talk(prompt,history):
|
110 |
k = 1 # number of retrieved documents
|
111 |
-
scores , retrieved_documents = search(prompt, k)
|
112 |
-
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
|
113 |
-
formatted_prompt = formatted_prompt[:
|
114 |
-
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
115 |
-
#
|
|
|
116 |
input_ids = tokenizer.apply_chat_template(
|
117 |
messages,
|
118 |
add_generation_prompt=True,
|
119 |
return_tensors="pt"
|
120 |
).to(model.device)
|
|
|
|
|
|
|
121 |
outputs = model.generate(
|
122 |
input_ids,
|
123 |
-
max_new_tokens=
|
124 |
eos_token_id=terminators,
|
125 |
do_sample=True,
|
126 |
temperature=0.6,
|
127 |
top_p=0.9,
|
128 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
streamer = TextIteratorStreamer(
|
130 |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
generate_kwargs = dict(
|
133 |
input_ids= input_ids,
|
134 |
streamer=streamer,
|
135 |
-
max_new_tokens=
|
136 |
do_sample=True,
|
137 |
top_p=0.95,
|
138 |
temperature=0.75,
|
139 |
eos_token_id=terminators,
|
140 |
)
|
|
|
|
|
141 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
142 |
t.start()
|
143 |
-
|
144 |
-
|
145 |
outputs = []
|
146 |
# for text in streamer:
|
147 |
# outputs.append(text)
|
148 |
# print(outputs)
|
149 |
# yield "".join(outputs)
|
150 |
-
|
151 |
-
|
152 |
-
print("check3B")
|
153 |
|
154 |
|
155 |
TITLE = "AI Copilot for Diabetes Patients"
|
@@ -157,7 +155,7 @@ TITLE = "AI Copilot for Diabetes Patients"
|
|
157 |
DESCRIPTION = ""
|
158 |
|
159 |
import gradio as gr
|
160 |
-
|
161 |
demo = gr.ChatInterface(
|
162 |
fn=talk,
|
163 |
chatbot=gr.Chatbot(
|
@@ -174,6 +172,6 @@ demo = gr.ChatInterface(
|
|
174 |
description=DESCRIPTION,
|
175 |
|
176 |
)
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
1 |
from datasets import load_dataset
|
|
|
|
|
|
|
2 |
from langchain.docstore.document import Document as LangchainDocument
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
#from langchain.chains import ConversationalRetrievalChain
|
9 |
+
#from transformers import pipeline
|
10 |
+
#from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
11 |
+
#from langchain_core.messages import SystemMessage
|
12 |
+
import time
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
from transformers import AutoModelForCausalLM
|
15 |
+
from transformers import TextIteratorStreamer
|
16 |
+
from threading import Thread
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
+
dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
20 |
+
print(dataset)
|
21 |
+
# Returns a list of dictionaries, each representing a row in the dataset.
|
22 |
|
23 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
|
24 |
+
docs = splitter.create_documents(str(dataset))
|
25 |
+
# Returns a list of documents
|
26 |
|
27 |
+
embedding_model = HuggingFaceEmbeddings(model_name = "all-MiniLM-L6-v2")
|
28 |
|
29 |
+
data = FAISS.from_texts(docs, embedding_model)
|
|
|
|
|
30 |
|
31 |
+
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
|
|
|
|
|
|
32 |
|
33 |
+
#data = dataset["train"]
|
34 |
+
data = data.add_faiss_index("embeddings")
|
35 |
+
# adds a column that has a index of embeddings
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
print("check1")
|
|
|
41 |
SYS_PROMPT = """You are an assistant for answering questions.
|
42 |
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|
43 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
44 |
+
# Provides context of how to answer the question
|
45 |
|
46 |
print("check2")
|
47 |
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
50 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
51 |
+
# pulling tokeinzer for text generation model
|
52 |
model = AutoModelForCausalLM.from_pretrained(llm_model)
|
53 |
+
# Initializing the text generation model
|
54 |
|
55 |
terminators = [
|
56 |
+
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
|
57 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
|
58 |
]
|
59 |
+
# indicates the end of a sequence
|
60 |
|
61 |
|
62 |
def search(query: str, k: int = 3 ):
|
63 |
"""a function that embeds a new query and returns the most probable results"""
|
64 |
+
embedded_query = embedding_model.encode(query) # create embedding of a new query
|
65 |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
66 |
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
|
67 |
k=k # get only top k results
|
68 |
)
|
69 |
return scores, retrieved_examples
|
70 |
+
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
|
71 |
+
# called by talk function that passes prompt
|
72 |
|
73 |
+
print(score, retrieved_examples)
|
74 |
print("check2A")
|
75 |
|
76 |
|
|
|
81 |
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
|
82 |
return PROMPT
|
83 |
|
84 |
+
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
|
85 |
|
86 |
print("check3")
|
87 |
+
print(PROMPT)
|
88 |
|
89 |
print("check3A")
|
90 |
|
91 |
|
92 |
def talk(prompt,history):
|
93 |
k = 1 # number of retrieved documents
|
94 |
+
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the promt passed
|
95 |
+
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
|
96 |
+
formatted_prompt = formatted_prompt[:400] # to avoid memory issue
|
97 |
+
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] # binding the system context and new prompt for LLM
|
98 |
+
# the chat template structure should be based on text generation model format
|
99 |
+
print("check3B")
|
100 |
input_ids = tokenizer.apply_chat_template(
|
101 |
messages,
|
102 |
add_generation_prompt=True,
|
103 |
return_tensors="pt"
|
104 |
).to(model.device)
|
105 |
+
# tell the model to generate
|
106 |
+
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
|
107 |
+
print("check3C")
|
108 |
outputs = model.generate(
|
109 |
input_ids,
|
110 |
+
max_new_tokens=300,
|
111 |
eos_token_id=terminators,
|
112 |
do_sample=True,
|
113 |
temperature=0.6,
|
114 |
top_p=0.9,
|
115 |
)
|
116 |
+
# calling the model to generate response based on message/ input
|
117 |
+
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
118 |
+
# temperature controls randomness. more renadomness with higher temperature
|
119 |
+
# only the tokens comprising the top_p probability mass are considered for responses
|
120 |
+
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
|
121 |
+
print("check3D")
|
122 |
streamer = TextIteratorStreamer(
|
123 |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
124 |
+
)
|
125 |
+
# stores print-ready text in a queue, to be used by a downstream application as an iterator. removes specail tokens in generated text.
|
126 |
+
# timeout for text queue. tokenizer for decoding tokens
|
127 |
+
# called by generate_kwargs
|
128 |
+
print("check3E")
|
129 |
generate_kwargs = dict(
|
130 |
input_ids= input_ids,
|
131 |
streamer=streamer,
|
132 |
+
max_new_tokens= 512,
|
133 |
do_sample=True,
|
134 |
top_p=0.95,
|
135 |
temperature=0.75,
|
136 |
eos_token_id=terminators,
|
137 |
)
|
138 |
+
# send additional parameters to model for generation
|
139 |
+
print("check3F")
|
140 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
141 |
+
# to process multiple instances
|
142 |
t.start()
|
143 |
+
# start a thread
|
144 |
+
print("check3G")
|
145 |
outputs = []
|
146 |
# for text in streamer:
|
147 |
# outputs.append(text)
|
148 |
# print(outputs)
|
149 |
# yield "".join(outputs)
|
150 |
+
print("check3H")
|
|
|
|
|
151 |
|
152 |
|
153 |
TITLE = "AI Copilot for Diabetes Patients"
|
|
|
155 |
DESCRIPTION = ""
|
156 |
|
157 |
import gradio as gr
|
158 |
+
# Design chatbot
|
159 |
demo = gr.ChatInterface(
|
160 |
fn=talk,
|
161 |
chatbot=gr.Chatbot(
|
|
|
172 |
description=DESCRIPTION,
|
173 |
|
174 |
)
|
175 |
+
# launch chatbot and calls the talk function which in turn calls other functions
|
176 |
+
print("check3I")
|
177 |
+
demo.launch(debug=True)
|