Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,20 @@ print(dataset)
|
|
4 |
|
5 |
from langchain.docstore.document import Document as LangchainDocument
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
|
8 |
-
|
9 |
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
-
|
12 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
13 |
-
data =
|
|
|
|
|
14 |
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
|
15 |
|
16 |
|
17 |
from langchain_community.vectorstores import Chroma
|
18 |
-
persist_directory = 'docs/chroma/'
|
19 |
|
20 |
#vectordb = Chroma.from_documents(
|
21 |
# documents=docs,
|
|
|
4 |
|
5 |
from langchain.docstore.document import Document as LangchainDocument
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
|
8 |
+
docs = splitter.create_documents(str(dataset))
|
9 |
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
13 |
+
data = FAISS.from_documents(docs, embedding_model)
|
14 |
+
|
15 |
+
#data = dataset["train"]
|
16 |
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
|
17 |
|
18 |
|
19 |
from langchain_community.vectorstores import Chroma
|
20 |
+
#persist_directory = 'docs/chroma/'
|
21 |
|
22 |
#vectordb = Chroma.from_documents(
|
23 |
# documents=docs,
|